Home Liver DiseasesLiver Cirrhosis Utilizing the gut microbiome in decompensated cirrhosis and acute-on-chronic liver failure

Utilizing the gut microbiome in decompensated cirrhosis and acute-on-chronic liver failure

Credits to the Source Link Daniel
Utilizing the gut microbiome in decompensated cirrhosis and acute-on-chronic liver failure
  • 1.

    Sender, R., Fuchs, S. & Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cell humans. Cell 164, 337–340 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 2.

    Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 3.

    Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 4.

    Li, J. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834–841 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 5.

    Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0603-3 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • 6.

    Lynch, S. V. & Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 7.

    Ridlon, J. M., Kang, D. J., Hylemon, P. B. & Bajaj, J. S. Gut microbiota, cirrhosis, and alcohol regulate bile acid metabolism in the gut. Dig. Dis. 33, 338–345 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 8.

    Tilg, H., Cani, P. D. & Mayer, E. A. Gut microbiome and liver diseases. Gut 65, 2035–2044 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 9.

    Tripathi, A. et al. The gut–liver axis and the intersection with the microbiome. Nat. Rev. Gastroenterol. Hepatol. 15, 397–411 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 10.

    Tsuchida, T. & Friedman, S. L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 14, 397–411 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 11.

    Parola, M. & Pinzani, M. Liver fibrosis: pathophysiology, pathogenetic targets and clinical issues. Mol. Aspects Med. 65, 37–55 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 12.

    Tsochatzis, E. A., Bosch, J. & Burroughs, A. K. Liver cirrhosis. Lancet 383, 1749–1761 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • 13.

    Vlahcevic, Z. R., Buhac, I., Bell, C. C. Jr & Swell, L. Abnormal metabolism of secondary bile acids in patients with cirrhosis. Gut 11, 420–422 (1970).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 14.

    Acharya, C., Sahingur, S. E. & Bajaj, J. S. Microbiota, cirrhosis, and the emerging oral–gut–liver axis. JCI Insight 2, e94416 (2017).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • 15.

    Bosch, J. & Garcia-Pagan, J. C. Complications of cirrhosis. I. Portal hypertension. J. Hepatol. 32, 141–156 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 16.

    European Association for the Study of the Liver. EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. J. Hepatol. 69, 406–460 (2018).

    Article 

    Google Scholar
     

  • 17.

    Qin, N. et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 513, 59–64 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 18.

    Claria, J. et al. Systemic inflammation in decompensated cirrhosis: characterization and role in acute-on-chronic liver failure. Hepatology 64, 1249–1264 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 19.

    Trebicka, J. et al. Addressing profiles of systemic inflammation across the different clinical phenotypes of acutely decompensated cirrhosis. Front. Immunol. 10, 476 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 20.

    Moreau, R. et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology 144, 1426–1437 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • 21.

    Fernandez, J. et al. Bacterial and fungal infections in acute-on-chronic liver failure: prevalence, characteristics and impact on prognosis. Gut 67, 1870–1880 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 22.

    Bajaj, J. S. et al. Serum levels of metabolites produced by intestinal microbes and lipid moieties independently associated with acute on chronic liver failure and death in patients with cirrhosis. Gastroenterology https://doi.org/10.1053/j.gastro.2020.07.019 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • 23.

    Bajaj, J. S. Alcohol, liver disease and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 16, 235–246 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • 24.

    Byass, P. The global burden of liver disease: a challenge for methods and for public health. BMC Med. 12, 159 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 25.

    Gines, P. et al. Screening for liver fibrosis in the general population: a call for action. Lancet Gastroenterol. Hepatol. 1, 256–260 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • 26.

    Collaborators, G. B. D. C. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 5, 245–266 (2020).

    Article 

    Google Scholar
     

  • 27.

    Stein, E. et al. Heavy daily alcohol intake at the population level predicts the weight of alcohol in cirrhosis burden worldwide. J. Hepatol. 65, 998–1005 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 28.

    Kim, D. et al. Changing trends in etiology-based annual mortality from chronic liver disease, from 2007 through 2016. Gastroenterology 155, 1154–1163.e3 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 29.

    Singh, S. P., Panigrahi, S., Mishra, D. & Khatua, C. R. Alcohol-associated liver disease, not hepatitis B, is the major cause of cirrhosis in Asia. J. Hepatol. 70, 1031–1032 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • 30.

    Allen, A. M. & Kim, W. R. Epidemiology and healthcare burden of acute-on-chronic liver failure. Semin. Liver Dis. 36, 123–126 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • 31.

    Zutshi, Y. Liver Disease Treatments: The Global Market (BCC, 2015).

  • 32.

    Ge, P. S. & Runyon, B. A. Treatment of patients with cirrhosis. N. Engl. J. Med. 375, 767–777 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 33.

    Arroyo, V., Moreau, R. & Jalan, R. Acute-on-chronic liver failure. N. Engl. J. Med. 382, 2137–2145 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 34.

    Arroyo, V. et al. Acute-on-chronic liver failure in cirrhosis. Nat. Rev. Dis. Primers 2, 16041 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • 35.

    Trebicka, J. et al. The PREDICT study uncovers three clinical courses in acutely decompensated cirrhosis with distinct pathophysiology. J. Hepatol. 73, 842–854 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • 36.

    Sarin, S. K. et al. Acute-on-chronic liver failure: consensus recommendations of the Asian Pacific Association for the Study of the Liver (APASL) 2014. Hepatol. Int. 8, 453–471 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • 37.

    Bajaj, J. S. et al. Survival in infection-related acute-on-chronic liver failure is defined by extrahepatic organ failures. Hepatology 60, 250–256 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 38.

    O’Leary, J. G. et al. NACSELD acute-on-chronic liver failure (NACSELD-ACLF) score predicts 30-day survival in hospitalized patients with cirrhosis. Hepatology 67, 2367–2374 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 39.

    Hernaez, R., Sola, E., Moreau, R. & Gines, P. Acute-on-chronic liver failure: an update. Gut 66, 541–553 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 40.

    Kim, T. Y. et al. Characteristics and discrepancies in acute-on-chronic liver failure: need for a unified definition. PLoS ONE 11, e0146745 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 41.

    Li, H. et al. Characteristics, diagnosis and prognosis of acute-on-chronic liver failure in cirrhosis associated to hepatitis B. Sci. Rep. 6, 25487 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 42.

    Garcia-Tsao, G., Albillos, A., Barden, G. E. & West, A. B. Bacterial translocation in acute and chronic portal hypertension. Hepatology 17, 1081–1085 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 43.

    Oh, T. G. et al. A universal gut-microbiome-derived signature predicts cirrhosis. Cell Metab. 32, 878–888.e6 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 44.

    Korpela, K. et al. Selective maternal seeding and environment shape the human gut microbiome. Genome Res. 28, 561–568 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 45.

    Acharya, C. & Bajaj, J. S. Gut microbiota and complications of liver disease. Gastroenterol. Clin. North Am. 46, 155–169 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 46.

    Davis, B. C. & Bajaj, J. S. The human gut microbiome in liver diseases. Semin. Liver Dis. 37, 128–140 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 47.

    Albillos, A., Gottardi, A. & Rescigno, M. The gut–liver axis in liver disease: pathophysiological basis for therapy. J. Hepatol. 72, 558–577 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 48.

    Hartmann, P. et al. Deficiency of intestinal mucin-2 ameliorates experimental alcoholic liver disease in mice. Hepatology 58, 108–119 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 49.

    Henriksen, J. H., Moller, S., Ring-Larsen, H. & Christensen, N. J. The sympathetic nervous system in liver disease. J. Hepatol. 29, 328–341 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 50.

    Wiest, R., Albillos, A., Trauner, M., Bajaj, J. S. & Jalan, R. Targeting the gut–liver axis in liver disease. J. Hepatol. 67, 1084–1103 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 51.

    Teltschik, Z. et al. Intestinal bacterial translocation in rats with cirrhosis is related to compromised Paneth cell antimicrobial host defense. Hepatology 55, 1154–1163 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • 52.

    Wang, L. et al. Intestinal REG3 lectins protect against alcoholic steatohepatitis by reducing mucosa-associated microbiota and preventing bacterial translocation. Cell Host Microbe 19, 227–239 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 53.

    Du Plessis, J. et al. Activated intestinal macrophages in patients with cirrhosis release NO and IL-6 that may disrupt intestinal barrier function. J. Hepatol. 58, 1125–1132 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 54.

    Munoz, L. et al. Intestinal immune dysregulation driven by dysbiosis promotes barrier disruption and bacterial translocation in rats with cirrhosis. Hepatology 70, 925–938 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 55.

    Trebicka, J. et al. Soluble TNF-α-receptors I are prognostic markers in TIPS-treated patients with cirrhosis and portal hypertension. PLoS ONE 8, e83341 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 56.

    Queck, A. et al. Role of portal venous platelet activation in patients with decompensated cirrhosis and TIPS. Gut 69, 1535–1536 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 57.

    Schierwagen, R. et al. Circulating microbiome in blood of different circulatory compartments. Gut 68, 578–580 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 58.

    Bajaj, J. S. et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J. Hepatol. 60, 940–947 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 59.

    Zhang, Y. et al. Characterization of the circulating microbiome in acute-on-chronic liver failure associated with hepatitis B. Liver Int. 39, 1207–1216 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 60.

    Villa, E. et al. Enoxaparin prevents portal vein thrombosis and liver decompensation in patients with advanced cirrhosis. Gastroenterology 143, 1253–1260 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 61.

    Nery, F. et al. Causes and consequences of portal vein thrombosis in 1,243 patients with cirrhosis: results of a longitudinal study. Hepatology 61, 660–667 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 62.

    Garcia-Tsao, G., Lee, F. Y., Barden, G. E., Cartun, R. & West, A. B. Bacterial translocation to mesenteric lymph nodes is increased in cirrhotic rats with ascites. Gastroenterology 108, 1835–1841 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 63.

    Macdonald, S. et al. Cell death markers in patients with cirrhosis and acute decompensation. Hepatology 67, 989–1002 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 64.

    Praktiknjo, M. et al. Acute decompensation boosts hepatic collagen type III deposition and deteriorates experimental and human cirrhosis. Hepatol. Commun. 2, 211–222 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 65.

    Shi, Y. et al. Acute-on-chronic liver failure precipitated by hepatic injury is distinct from that precipitated by extrahepatic insults. Hepatology 62, 232–242 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • 66.

    Sarin, S. K. & Choudhury, A. Acute-on-chronic liver failure: terminology, mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 13, 131–149 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 67.

    Medzhitov, R. Inflammation 2010: new adventures of an old flame. Cell 140, 771–776 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 68.

    Moreau, R. et al. Blood metabolomics uncovers inflammation-associated mitochondrial dysfunction as a potential mechanism underlying ACLF. J. Hepatol. 72, 688–701 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 69.

    Lehmann, J. M. et al. Circulating CXCL10 in cirrhotic portal hypertension might reflect systemic inflammation and predict ACLF and mortality. Liver Int. 38, 875–884 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 70.

    Duan, Y. et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature 575, 505–511 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 71.

    Llopis, M. et al. Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease. Gut 65, 830–839 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 72.

    Puri, P. et al. The circulating microbiome signature and inferred functional metagenomics in alcoholic hepatitis. Hepatology 67, 1284–1302 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 73.

    Jansen, C. et al. Left ventricular longitudinal contractility predicts acute-on-chronic liver failure development and mortality after transjugular intrahepatic portosystemic shunt. Hepatol. Commun. 3, 340–347 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 74.

    Trebicka, J. Emergency TIPS in a Child–Pugh B patient: when does the window of opportunity open and close? J. Hepatol. 66, 442–450 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • 75.

    Trebicka, J. Predisposing factors in acute-on-chronic liver failure. Semin. Liver Dis. 36, 167–173 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • 76.

    Jansen, C. et al. Increase in liver stiffness after transjugular intrahepatic portosystemic shunt is associated with inflammation and predicts mortality. Hepatology 67, 1472–1484 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 77.

    D’Amico, G., Garcia-Tsao, G. & Pagliaro, L. Natural history and prognostic indicators of survival in cirrhosis: a systematic review of 118 studies. J. Hepatol. 44, 217–231 (2006).

    PubMed 
    Article 

    Google Scholar
     

  • 78.

    Jalan, R. et al. Acute endotoxemia following transjugular intrahepatic stent-shunt insertion is associated with systemic and cerebral vasodilatation with increased whole body nitric oxide production in critically ill cirrhotic patients. J. Hepatol. 54, 265–271 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 79.

    Bala, S., Marcos, M., Gattu, A., Catalano, D. & Szabo, G. Acute binge drinking increases serum endotoxin and bacterial DNA levels in healthy individuals. PLoS ONE 9, e96864 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 80.

    Voigt, R. M. et al. Diurnal variations in intestinal barrier integrity and liver pathology in mice: implications for alcohol binge. Am. J. Physiol. Gastrointest. Liver Physiol. 314, G131–G141 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 81.

    Mutlu, E. A. et al. Colonic microbiome is altered in alcoholism. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G966–G978 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 82.

    Dubinkina, V. B. et al. Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease. Microbiome 5, 141 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 83.

    Bjarnason, I., Peters, T. J. & Wise, R. J. The leaky gut of alcoholism: possible route of entry for toxic compounds. Lancet 1, 179–182 (1984).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 84.

    Yang, A. M. et al. Intestinal fungi contribute to development of alcoholic liver disease. J. Clin. Invest. 127, 2829–2841 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 85.

    Bajaj, J. S. et al. Fungal dysbiosis in cirrhosis. Gut 67, 1146–1154 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 86.

    Albillos, A., de-la-Hera, A. & Alvarez-Mon, M. Serum lipopolysaccharide-binding protein prediction of severe bacterial infection in cirrhotic patients with ascites. Lancet 363, 1608–1610 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 87.

    Moreau, R. et al. Blood metabolomics uncovers inflammation-associated mitochondrial dysfunction as a potential mechanism underlying ACLF. J. Hepatol. 72, 688–701 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 88.

    Ridlon, J. M., Alves, J. M., Hylemon, P. B. & Bajaj, J. S. Cirrhosis, bile acids and gut microbiota: unraveling a complex relationship. Gut Microbes 4, 382–387 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 89.

    Kakiyama, G. et al. Colonic inflammation and secondary bile acids in alcoholic cirrhosis. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G929–G937 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 90.

    Verbeke, L. et al. The FXR agonist obeticholic acid prevents gut barrier dysfunction and bacterial translocation in cholestatic rats. Am. J. Pathol. 185, 409–419 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 91.

    Ubeda, M. et al. Obeticholic acid reduces bacterial translocation and inhibits intestinal inflammation in cirrhotic rats. J. Hepatol. 64, 1049–1057 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 92.

    Sorribas, M. et al. FXR modulates the gut–vascular barrier by regulating the entry sites for bacterial translocation in experimental cirrhosis. J. Hepatol. 71, 1126–1140 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 93.

    Reiberger, T. et al. Non-selective β-blocker therapy decreases intestinal permeability and serum levels of LBP and IL-6 in patients with cirrhosis. J. Hepatol. 58, 911–921 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 94.

    Perez-Paramo, M. et al. Effect of propranolol on the factors promoting bacterial translocation in cirrhotic rats with ascites. Hepatology 31, 43–48 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 95.

    Senzolo, M. et al. β-Blockers protect against spontaneous bacterial peritonitis in cirrhotic patients: a meta-analysis. Liver Int. 29, 1189–1193 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 96.

    Senzolo, M. et al. Oral propranolol decreases intestinal permeability in patients with cirrhosis: another protective mechanism against bleeding? Am. J. Gastroenterol. 104, 3115–3116 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 97.

    Lang, S. et al. Intestinal virome signature associated with severity of nonalcoholic fatty liver disease. Gastroenterology https://doi.org/10.1053/j.gastro.2020.07.005 (2020).

  • 98.

    Schmidt, T. S. B., Raes, J. & Bork, P. The human gut microbiome: from association to modulation. Cell 172, 1198–1215 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 99.

    Malinchoc, M. et al. A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology 31, 864–871 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 100.

    Pugh, R. N., Murray-Lyon, I. M., Dawson, J. L., Pietroni, M. C. & Williams, R. Transection of the oesophagus for bleeding oesophageal varices. Br. J. Surg. 60, 646–649 (1973).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 101.

    Jalan, R. et al. The CLIF consortium acute decompensation score (CLIF-C ADs) for prognosis of hospitalised cirrhotic patients without acute-on-chronic liver failure. J. Hepatol. 62, 831–840 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • 102.

    Such, J. et al. Detection and identification of bacterial DNA in patients with cirrhosis and culture-negative, nonneutrocytic ascites. Hepatology 36, 135–141 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 103.

    Alvarez-Silva, C. et al. Compartmentalization of immune response and microbial translocation in decompensated cirrhosis. Front. Immunol. 10, 69 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 104.

    Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 105.

    Yu, J. et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 66, 70–78 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 106.

    Chen, Y. et al. Gut dysbiosis in acute-on-chronic liver failure and its predictive value for mortality. J. Gastroenterol. Hepatol. 30, 1429–1437 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 107.

    Bajaj, J. S. et al. Association between intestinal microbiota collected at hospital admission and outcomes of patients with cirrhosis. Clin. Gastroenterol. Hepatol. 17, 756–765.e3 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • 108.

    Bajaj, J. S. et al. Gut microbial RNA and DNA analysis predicts hospitalizations in cirrhosis. JCI Insight 8, e98019 (2018).

    Article 

    Google Scholar
     

  • 109.

    Bajaj, J. S. et al. Liver transplant modulates gut microbial dysbiosis and cognitive function in cirrhosis. Liver Transpl. 23, 907–914 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • 110.

    Bajaj, J. S. et al. Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G675–G685 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 111.

    Bajaj, J. S. et al. Salivary microbiota reflects changes in gut microbiota in cirrhosis with hepatic encephalopathy. Hepatology 62, 1260–1271 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 112.

    Duvallet, C., Gibbons, S. M., Gurry, T., Irizarry, R. A. & Alm, E. J. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat. Commun. 8, 1784 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 113.

    Wirbel, J. et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. 25, 679–689 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 114.

    Thomas, A. M. et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat. Med. 25, 667–678 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 115.

    Pasolli, E. et al. Accessible, curated metagenomic data through ExperimentHub. Nat. Methods 14, 1023–1024 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 116.

    Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 117.

    Dam, G., Vilstrup, H., Watson, H. & Jepsen, P. Proton pump inhibitors as a risk factor for hepatic encephalopathy and spontaneous bacterial peritonitis in patients with cirrhosis with ascites. Hepatology 64, 1265–1272 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 118.

    Llorente, C. et al. Gastric acid suppression promotes alcoholic liver disease by inducing overgrowth of intestinal Enterococcus. Nat. Commun. 8, 837 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 119.

    Bajaj, J. S., Betrapally, N. S. & Gillevet, P. M. Decompensated cirrhosis and microbiome interpretation. Nature 525, E1–E2 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 120.

    Holte, K., Krag, A. & Gluud, L. L. Systematic review and meta-analysis of randomized trials on probiotics for hepatic encephalopathy. Hepatol. Res. 42, 1008–1015 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • 121.

    Dhiman, R. K. et al. Probiotic VSL#3 reduces liver disease severity and hospitalization in patients with cirrhosis: a randomized, controlled trial. Gastroenterology 147, 1327–1337.e3 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 122.

    Bajaj, J. S. et al. Diet affects gut microbiota and modulates hospitalization risk differentially in an international cirrhosis cohort. Hepatology 68, 234–247 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 123.

    Sartor, R. B. Review article: the potential mechanisms of action of rifaximin in the management of inflammatory bowel diseases. Aliment. Pharmacol. Ther. 43, 27–36 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 124.

    Kalambokis, G. N. et al. Rifaximin improves systemic hemodynamics and renal function in patients with alcohol-related cirrhosis and ascites. Clin. Gastroenterol. Hepatol. 10, 815–818 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 125.

    Vlachogiannakos, J. et al. Long-term administration of rifaximin improves the prognosis of patients with decompensated alcoholic cirrhosis. J. Gastroenterol. Hepatol. 28, 450–455 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 126.

    Lutz, P. et al. Impact of rifaximin on the frequency and characteristics of spontaneous bacterial peritonitis in patients with liver cirrhosis and ascites. PLoS ONE 9, e93909 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 127.

    Kimer, N. et al. Rifaximin has no effect on hemodynamics in decompensated cirrhosis: a randomized, double-blind, placebo-controlled trial. Hepatology 65, 592–603 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 128.

    Kimer, N. et al. Rifaximin has minor effects on bacterial composition, inflammation and bacterial translocation in cirrhosis; a randomized trial. J. Gastroenterol. Hepatol. 33, 307–314 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 129.

    Abraldes, J. G. et al. Addition of simvastatin to standard therapy for the prevention of variceal rebleeding does not reduce rebleeding but increases survival in patients with cirrhosis. Gastroenterology 150, 1160–1170.e3 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 130.

    Abraldes, J. G. et al. Simvastatin lowers portal pressure in patients with cirrhosis and portal hypertension: a randomized controlled trial. Gastroenterology 136, 1651–1658 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 131.

    Tripathi, D. M. et al. Simvastatin prevents progression of acute on chronic liver failure in rats with cirrhosis and portal hypertension. Gastroenterology 155, 1564–1577 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 132.

    Vieira-Silva, S. et al. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature 581, 310–315 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 133.

    Pose, E. et al. Safety of two different doses of simvastatin plus rifaximin in decompensated cirrhosis (LIVERHOPE-SAFETY): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Gastroenterol. Hepatol. 5, 31–41 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • 134.

    European Association for the Study of the Liver. EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. J. Hepatol. 69, 406–460 (2018).

    Article 

    Google Scholar
     

  • 135.

    Wiest, R., Krag, A. & Gerbes, A. Spontaneous bacterial peritonitis: recent guidelines and beyond. Gut 61, 297–310 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 136.

    Moreau, R. et al. Effects of long-term norfloxacin therapy in patients with advanced cirrhosis. Gastroenterology 155, 1816–1827.e9 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 137.

    Fernandez, J., Tandon, P., Mensa, J. & Garcia-Tsao, G. Antibiotic prophylaxis in cirrhosis: good and bad. Hepatology 63, 2019–2031 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • 138.

    Fernandez, J. et al. Multidrug-resistant bacterial infections in patients with decompensated cirrhosis and with acute-on-chronic liver failure in Europe. J. Hepatol. 70, 398–411 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • 139.

    Piano, S. et al. Epidemiology and effects of bacterial infections in patients with cirrhosis worldwide. Gastroenterology 156, 1368–1380.e10 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • 140.

    Cox, L. M. & Blaser, M. J. Antibiotics in early life and obesity. Nat. Rev. Endocrinol. 11, 182–190 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • 141.

    Kerr, R. M., Du Bois, J. J. & Holt, P. R. Use of 125-I- and 51-Cr-labeled albumin for the measurement of gastrointestinal and total albumin catabolism. J. Clin. Invest. 46, 2064–2082 (1967).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 142.

    Gortzen, J. et al. Interplay of matrix stiffness and c-SRC in hepatic fibrosis. Front. Physiol. 6, 359 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 143.

    Klammt, S. et al. Albumin-binding function is reduced in patients with decompensated cirrhosis and correlates inversely with severity of liver disease assessed by model for end-stage liver disease. Eur. J. Gastroenterol. Hepatol. 19, 257–263 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 144.

    Jalan, R. et al. Alterations in the functional capacity of albumin in patients with decompensated cirrhosis is associated with increased mortality. Hepatology 50, 555–564 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 145.

    Domenicali, M. et al. Posttranscriptional changes of serum albumin: clinical and prognostic significance in hospitalized patients with cirrhosis. Hepatology 60, 1851–1860 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 146.

    Bernardi, M., Ricci, C. S. & Zaccherini, G. Role of human albumin in the management of complications of liver cirrhosis. J. Clin. Exp. Hepatol. 4, 302–311 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 147.

    O’Brien, A. J. et al. Immunosuppression in acutely decompensated cirrhosis is mediated by prostaglandin E2. Nat. Med. 20, 518–523 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 148.

    Fernandez, J. et al. Efficacy of albumin treatment for patients with cirrhosis and infections unrelated to spontaneous bacterial peritonitis. Clin. Gastroenterol. Hepatol. 18, 963–973.e14 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 149.

    Fernandez, J. et al. Effects of albumin treatment on systemic and portal hemodynamics and systemic inflammation in patients with decompensated cirrhosis. Gastroenterology 157, 149–162 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 150.

    Caraceni, P. et al. Long-term albumin administration in decompensated cirrhosis (ANSWER): an open-label randomised trial. Lancet 391, 2417–2429 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 151.

    Guevara, M. et al. Albumin for bacterial infections other than spontaneous bacterial peritonitis in cirrhosis. A randomized, controlled study. J. Hepatol. 57, 759–765 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 152.

    Thevenot, T. et al. Effect of albumin in cirrhotic patients with infection other than spontaneous bacterial peritonitis. A randomized trial. J. Hepatol. 62, 822–830 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 153.

    Bernardi, M. et al. Albumin in decompensated cirrhosis: new concepts and perspectives. Gut 69, 1127–1138 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 154.

    Loomba, R. et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab. 25, 1054–1062.e5 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 155.

    Bajaj, J. S. et al. Periodontal therapy favorably modulates the oral–gut–hepatic axis in cirrhosis. Am. J. Physiol. Gastrointest. Liver Physiol. 315, G824–G837 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 156.

    Braham, Y., Meunier, G. & Meunier, B. [Demonstration of an oxidative biotransformation of 9-methoxyellipticine. Comparison with the case of 9-hydroxyellipticine] [French]. C. R. Acad. Sci. III 304, 301–306 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • 157.

    Bajaj, J. S. et al. Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: a randomized clinical trial. Hepatology 66, 1727–1738 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 158.

    Bajaj, J. S. et al. Long-term outcomes of fecal microbiota transplantation in patients with cirrhosis. Gastroenterology 156, 1921–1923.e3 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 159.

    Bajaj, J. S. et al. Fecal microbial transplant capsules are safe in hepatic encephalopathy: a phase 1, randomized, placebo-controlled trial. Hepatology 70, 1690–1703 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 160.

    Bajaj, J. S. et al. Microbial functional change is linked with clinical outcomes after capsular fecal transplant in cirrhosis. JCI Insight 4, e133410 (2019).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • 161.

    DeFilipp, Z. et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N. Engl. J. Med. 381, 2043–2050 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • 162.

    Hartmann, P., Chu, H., Duan, Y. & Schnabl, B. Gut microbiota in liver disease: too much is harmful, nothing at all is not helpful either. Am. J. Physiol. Gastrointest. Liver Physiol. 316, G563–G573 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 163.

    Burroughs, A. K. & Thalheimer, U. Hepatic venous pressure gradient in 2010: optimal measurement is key. Hepatology 51, 1894–1896 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • 164.

    Ripoll, C. et al. Hepatic venous pressure gradient predicts clinical decompensation in patients with compensated cirrhosis. Gastroenterology 133, 481–488 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 165.

    Trebicka, J., Reiberger, T. & Laleman, W. Gut–liver axis links portal hypertension to acute-on-chronic liver failure. Visc. Med. 34, 270–275 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 166.

    Cho, E. J. et al. Circulating microbiota-based metagenomic signature for detection of hepatocellular carcinoma. Sci. Rep. 9, 7536 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 167.

    Ren, Z. et al. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut 68, 1014–1023 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 168.

    Bass, N. M. et al. Rifaximin treatment in hepatic encephalopathy. N. Engl. J. Med. 362, 1071–1081 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 169.

    Arroyo, V., Claria, J. & Trebicka, J. in Encyclopedia of Gastroenterology 2nd edn (ed. Gerbes, A. L.) 436–443 (Elsevier, 2020).

  • Source Link

    Related Articles

    Leave a Comment

    This website uses cookies to improve your experience. We will assume you are ok with this, but you can opt-out if you wish. Accept Read More

    %d bloggers like this: