Home Journals Understanding tumor cell heterogeneity and its implication for immunotherapy in liver cancer by single cell analysis

Understanding tumor cell heterogeneity and its implication for immunotherapy in liver cancer by single cell analysis

Credits to the Source Link Daniel
Understanding tumor cell heterogeneity and its implication for immunotherapy in liver cancer by single cell analysis
    • Ryerson A.B.
    • Eheman C.R.
    • Altekruse S.F.
    • Ward J.W.
    • Jemal A.
    • Sherman R.L.
    • et al.

    Annual Report to the Nation on the Status of Cancer, 1975-2012, featuring the increasing incidence of liver cancer.

    Cancer. 2016; 122: 1312-1337

    • Bray F.
    • Ferlay J.
    • Soerjomataram I.
    • Siegel R.L.
    • Torre L.A.
    • Jemal A.

    Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.

    CA: a cancer journal for clinicians. 2018; 68: 394-424

  • Liver cancer: Regorafenib as second-line therapy in hepatocellular carcinoma.

    Nat Rev Gastroenterol Hepatol. 2017; 14: 141-142

    • Bruix J.
    • Qin S.
    • Merle P.
    • Granito A.
    • Huang Y.H.
    • Bodoky G.
    • et al.

    Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial.

    Lancet. 2017; 389: 56-66

    • Llovet J.M.
    • Ricci S.
    • Mazzaferro V.
    • Hilgard P.
    • Gane E.
    • Blanc J.F.
    • et al.

    Sorafenib in advanced hepatocellular carcinoma.

    N Engl J Med. 2008; 359: 378-390

    • Kudo M.
    • Finn R.S.
    • Qin S.
    • Han K.H.
    • Ikeda K.
    • Piscaglia F.
    • et al.

    Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial.

    Lancet. 2018; 391: 1163-1173

    • Abou-Alfa G.K.
    • Meyer T.
    • Cheng A.L.
    • El-Khoueiry A.B.
    • Rimassa L.
    • Ryoo B.Y.
    • et al.

    Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma.

    N Engl J Med. 2018; 379: 54-63

    • Zhu A.X.
    • Kang Y.K.
    • Yen C.J.
    • Finn R.S.
    • Galle P.R.
    • Llovet J.M.
    • et al.

    Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial.

    The Lancet Oncology. 2019; 20: 282-296

    • Duffy A.G.
    • Ulahannan S.V.
    • Makorova-Rusher O.
    • Rahma O.
    • Wedemeyer H.
    • Pratt D.
    • et al.

    Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma.

    J Hepatol. 2017; 66: 545-551

  • Abou-Alfa GK, Chan SL, Furuse J, Galle PR, Kelley RK, Qin S, et al. A randomized, multicenter phase 3 study of durvalumab (D) and tremelimumab (T) as first-line treatment in patients with unresectable hepatocellular carcinoma (HCC): HIMALAYA study. 2018;36(15_suppl):TPS4144-TPS4144.

  • Yau T, Kang Y-K, Kim T-Y, El-Khoueiry AB, Santoro A, Sangro B, et al. Nivolumab (NIVO) + ipilimumab (IPI) combination therapy in patients (pts) with advanced hepatocellular carcinoma (aHCC): Results from CheckMate 040. 2019;37(15_suppl):4012-4012.

    • El-Khoueiry A.B.
    • Sangro B.
    • Yau T.
    • Crocenzi T.S.
    • Kudo M.
    • Hsu C.
    • et al.

    Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial.

    Lancet. 2017; 389: 2492-2502

    • Zhu A.X.
    • Finn R.S.
    • Edeline J.
    • Cattan S.
    • Ogasawara S.
    • Palmer D.
    • et al.

    Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial.

    The Lancet Oncology. 2018; 19: 940-952

    • Finn R.S.
    • Qin S.
    • Ikeda M.
    • Galle P.R.
    • Ducreux M.
    • Kim T.Y.
    • et al.

    Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma.

    N Engl J Med. 2020; 382: 1894-1905

  • Yau T, Zagonel V, Santoro A, Acosta-Rivera M, Choo SP, Matilla A, et al. Nivolumab (NIVO) + ipilimumab (IPI) + cabozantinib (CABO) combination therapy in patients (pts) with advanced hepatocellular carcinoma (aHCC): Results from CheckMate 040. Journal of Clinical Oncology. 2020;38(4_suppl):478-478.

  • The future of immune checkpoint therapy.

    Science. 2015; 348: 56-61

  • Finn RS, Ryoo B-Y, Merle P, Kudo M, Bouattour M, Lim H-Y, et al. Results of KEYNOTE-240: phase 3 study of pembrolizumab (Pembro) vs best supportive care (BSC) for second line therapy in advanced hepatocellular carcinoma (HCC). 2019;37(15_suppl):4004-4004.

    • Sangro B.
    • Gomez-Martin C.
    • de la Mata M.
    • Inarrairaegui M.
    • Garralda E.
    • Barrera P.
    • et al.

    A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C.

    J Hepatol. 2013; 59: 81-88

    • Khatib S.
    • Pomyen Y.
    • Dang H.
    • Wang X.W.

    Understanding the Cause and Consequence of Tumor Heterogeneity.

    Trends in cancer. 2020; 6: 267-271

    • Zhang Q.
    • Lou Y.
    • Yang J.
    • Wang J.
    • Feng J.
    • Zhao Y.
    • et al.

    Integrated multiomic analysis reveals comprehensive tumour heterogeneity and novel immunophenotypic classification in hepatocellular carcinomas.

    Gut. 2019; 68: 2019-2031

  • Intratumor molecular and phenotypic diversity in hepatocellular carcinoma.

    Clinical cancer research : an official journal of the American Association for Cancer Research. 2015; 21: 1786-1788

    • Craig A.J.
    • von Felden J.
    • Garcia-Lezana T.
    • Sarcognato S.
    • Villanueva A.

    Tumour evolution in hepatocellular carcinoma.

    Nat Rev Gastroenterol Hepatol. 2020; 17: 139-152

    • Hoshida Y.
    • Nijman S.M.
    • Kobayashi M.
    • Chan J.A.
    • Brunet J.P.
    • Chiang D.Y.
    • et al.

    Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma.

    Cancer Res. 2009; 69: 7385-7392

    • Chaisaingmongkol J.
    • Budhu A.
    • Dang H.
    • Rabibhadana S.
    • Pupacdi B.
    • Kwon S.M.
    • et al.

    Common Molecular Subtypes Among Asian Hepatocellular Carcinoma and Cholangiocarcinoma.

    Cancer Cell. 2017; 32 (): 57-70

    • Friemel J.
    • Rechsteiner M.
    • Frick L.
    • Bohm F.
    • Struckmann K.
    • Egger M.
    • et al.

    Intratumor heterogeneity in hepatocellular carcinoma.

    Clinical cancer research : an official journal of the American Association for Cancer Research. 2015; 21: 1951-1961

    • Lee J.S.
    • Heo J.
    • Libbrecht L.
    • Chu I.S.
    • Kaposi-Novak P.
    • Calvisi D.F.
    • et al.

    A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells.

    Nature medicine. 2006; 12: 410-416

    • Ye Q.H.
    • Qin L.X.
    • Forgues M.
    • He P.
    • Kim J.W.
    • Peng A.C.
    • et al.

    Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning.

    NatMed. 2003; 9: 416-423

    • TheCancerGenomeAtlasResearchNetwork

    Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma.

    Cell. 2017; 169 (): 1327-1341

    • Kwon S.M.
    • Budhu A.
    • Woo H.G.
    • Chaisaingmongkol J.
    • Dang H.
    • Forgues M.
    • et al.

    Functional genomic complexity defines intratumor heterogeneity and tumor aggressiveness in liver cancer.

    Scientific Reports. 2019; 9: 16930

    • Li G.
    • Liu D.
    • Cooper T.K.
    • Kimchi E.T.
    • Qi X.
    • Avella D.M.
    • et al.

    Successful chemoimmunotherapy against hepatocellular cancer in a novel murine model.

    J Hepatol. 2017; 66: 75-85

    • Friedman D.
    • Baird J.R.
    • Young K.H.
    • Cottam B.
    • Crittenden M.R.
    • Friedman S.
    • et al.

    Programmed cell death-1 blockade enhances response to stereotactic radiation in an orthotopic murine model of hepatocellular carcinoma.

    Hepatology research : the official journal of the Japan Society of Hepatology. 2017; 47: 702-714

    • Yau T.
    • Park J.W.
    • Finn R.S.
    • Cheng A.-L.
    • Mathurin P.
    • Edeline J.
    • et al.

    LBA38_PRCheckMate 459: A randomized, multi-center phase III study of nivolumab (NIVO) vs sorafenib (SOR) as first-line (1L) treatment in patients (pts) with advanced hepatocellular carcinoma (aHCC).

    Annals of Oncology. 2019; 30

  • Hallmarks of cancer: the next generation.

    Cell. 2011; 144: 646-674

  • Unravelling biology and shifting paradigms in cancer with single-cell sequencing.

    Nat Rev Cancer. 2017; 17: 557-569

    • Vermeulen L.
    • Snippert H.J.

    Stem cell dynamics in homeostasis and cancer of the intestine.

    Nat Rev Cancer. 2014; 14: 468-480

  • Tumor evolution: Linear, branching, neutral or punctuated?.

    Biochim Biophys Acta Rev Cancer. 2017; 1867: 151-161

    • Jaitin D.A.
    • Kenigsberg E.
    • Keren-Shaul H.
    • Elefant N.
    • Paul F.
    • Zaretsky I.
    • et al.

    Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types.

    Science. 2014; 343: 776-779

    • Ma L.
    • Hernandez M.O.
    • Zhao Y.
    • Mehta M.
    • Tran B.
    • Kelly M.
    • et al.

    Tumor Cell Biodiversity Drives Microenvironmental Reprogramming in Liver Cancer.

    Cancer Cell. 2019; 36 (): 418-430

  • Evolution of the cancer genome.

    Nature reviews Genetics. 2012; 13: 795-806

  • The clonal evolution of tumor cell populations.

    Science. 1976; 194: 23-28

    • Lawrence M.S.
    • Stojanov P.
    • Polak P.
    • Kryukov G.V.
    • Cibulskis K.
    • Sivachenko A.
    • et al.

    Mutational heterogeneity in cancer and the search for new cancer-associated genes.

    Nature. 2013; 499: 214-218

    • Andersson N.
    • Bakker B.
    • Karlsson J.
    • Valind A.
    • Holmquist Mengelbier L.
    • Spierings D.C.J.
    • et al.

    Extensive Clonal Branching Shapes the Evolutionary History of High-Risk Pediatric Cancers.

    Cancer Res. 2020; 80: 1512-1523

    • Roth A.
    • McPherson A.
    • Laks E.
    • Biele J.
    • Yap D.
    • Wan A.
    • et al.

    Clonal genotype and population structure inference from single-cell tumor sequencing.

    Nature methods. 2016; 13: 573-576

    • Jahn K.
    • Kuipers J.
    • Beerenwinkel N.

    Tree inference for single-cell data.

    Genome Biol. 2016; 17: 86

  • Cells of origin in cancer.

    Nature. 2011; 469: 314-322

    • McGranahan N.
    • Rosenthal R.
    • Hiley C.T.
    • Rowan A.J.
    • Watkins T.B.K.
    • Wilson G.A.
    • et al.

    Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution.

    Cell. 2017; 171 (): 1259-1271

  • Cancer Evolution Constrained by the Immune Microenvironment.

    Cell. 2017; 170: 825-827

    • Gillies R.J.
    • Verduzco D.
    • Gatenby R.A.

    Evolutionary dynamics of carcinogenesis and why targeted therapy does not work.

    Nat Rev Cancer. 2012; 12: 487-493

  • Head SR, Komori HK, LaMere SA, Whisenant T, Van Nieuwerburgh F, Salomon DR, et al. Library construction for next-generation sequencing: overviews and challenges. BioTechniques. 2014;56(2):61-64, 66, 68, passim.

  • Zhang Q, He Y, Luo N, Patel SJ, Han Y, Gao R, et al. Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma. Cell. 2019;179(4):829-845.e820.

    • Sia D.
    • Jiao Y.
    • Martinez-Quetglas I.
    • Kuchuk O.
    • Villacorta-Martin C.
    • Castro de Moura M.
    • et al.

    Identification of an Immune-specific Class of Hepatocellular Carcinoma, Based on Molecular Features.

    Gastroenterology. 2017; 153: 812-826

    • Foerster F.
    • Hess M.
    • Gerhold-Ay A.
    • JU Marquardt
    • Becker D.
    • Galle P.R.
    • et al.

    The immune contexture of hepatocellular carcinoma predicts clinical outcome.

    Scientific reports. 2018; 8: 5351

    • Chevrier S.
    • Levine J.H.
    • Zanotelli V.R.T.
    • Silina K.
    • Schulz D.
    • Bacac M.
    • et al.

    An Immune Atlas of Clear Cell Renal Cell Carcinoma.

    Cell. 2017; 169 (): 736-749

    • Lavin Y.
    • Kobayashi S.
    • Leader A.
    • Amir E.D.
    • Elefant N.
    • Bigenwald C.
    • et al.

    Innate Immune Landscape in Early Lung Adenocarcinoma by Paired Single-Cell Analyses.

    Cell. 2017; 169 (): 750-765

    • Wagner J.
    • Rapsomaniki M.A.
    • Chevrier S.
    • Anzeneder T.
    • Langwieder C.
    • Dykgers A.
    • et al.

    A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer.

    Cell. 2019; 177 (): 1330-1345

    • Guo X.
    • Zhang Y.
    • Zheng L.
    • Zheng C.
    • Song J.
    • Zhang Q.
    • et al.

    Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing.

    Nature medicine. 2018; 24: 978-985

    • Snyder A.
    • Makarov V.
    • Merghoub T.
    • Yuan J.
    • Zaretsky J.M.
    • Desrichard A.
    • et al.

    Genetic basis for clinical response to CTLA-4 blockade in melanoma.

    N Engl J Med. 2014; 371: 2189-2199

    • Kang K.
    • Wang X.
    • Meng C.
    • He L.
    • Sang X.
    • Zheng Y.
    • et al.

    The application of single-cell sequencing technology in the diagnosis and treatment of hepatocellular carcinoma.

    Ann Transl Med. 2019; 7: 790

    • Ning L.
    • Liu G.
    • Li G.
    • Hou Y.
    • Tong Y.
    • He J.

    Current Challenges in the Bioinformatics of Single Cell Genomics.

    Frontiers in oncology. 2014; 4

    • Duan M.
    • Hao J.
    • Cui S.
    • Worthley D.L.
    • Zhang S.
    • Wang Z.
    • et al.

    Diverse modes of clonal evolution in HBV-related hepatocellular carcinoma revealed by single-cell genome sequencing.

    Cell research. 2018; 28: 359-373

    • Shema E.
    • Bernstein B.E.
    • Buenrostro J.D.

    Single-cell and single-molecule epigenomics to uncover genome regulation at unprecedented resolution.

    Nature genetics. 2019; 51: 19-25

    • Yan F.
    • Powell D.R.
    • Curtis D.J.
    • Wong N.C.

    From reads to insight: a hitchhiker’s guide to ATAC-seq data analysis.

    Genome Biology. 2020; 21: 22

    • Buenrostro J.D.
    • Giresi P.G.
    • Zaba L.C.
    • Chang H.Y.
    • Greenleaf W.J.

    Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position.

    Nature methods. 2013; 10: 1213-1218

  • Single-cell ATAC sequencing analysis: From data preprocessing to hypothesis generation.

    Comput Struct Biotechnol J. 2020; 18: 1429-1439

    • Corces M.R.
    • Buenrostro J.D.
    • Wu B.
    • Greenside P.G.
    • Chan S.M.
    • Koenig J.L.
    • et al.

    Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution.

    Nature genetics. 2016; 48: 1193-1203

    • Satpathy A.T.
    • Granja J.M.
    • Yost K.E.
    • Qi Y.
    • Meschi F.
    • McDermott G.P.
    • et al.

    Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion.

    Nature biotechnology. 2019; 37: 925-936

    • Ziegenhain C.
    • Vieth B.
    • Parekh S.
    • Reinius B.
    • Guillaumet-Adkins A.
    • Smets M.
    • et al.

    Comparative Analysis of Single-Cell RNA Sequencing Methods.

    Molecular cell. 2017; 65 (): 631-643

    • Picelli S.
    • Bjorklund A.K.
    • Faridani O.R.
    • Sagasser S.
    • Winberg G.
    • Sandberg R.

    Smart-seq2 for sensitive full-length transcriptome profiling in single cells.

    Nature methods. 2013; 10: 1096-1098

    • Macosko E.Z.
    • Basu A.
    • Satija R.
    • Nemesh J.
    • Shekhar K.
    • Goldman M.
    • et al.

    Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets.

    Cell. 2015; 161: 1202-1214

    • Zheng H.
    • Pomyen Y.
    • Hernandez M.O.
    • Li C.
    • Livak F.
    • Tang W.
    • et al.

    Single cell analysis reveals cancer stem cell heterogeneity in hepatocellular carcinoma.

    Hepatology. 2018;

    • Ho D.W.
    • Tsui Y.M.
    • Sze K.M.
    • Chan L.K.
    • Cheung T.T.
    • Lee E.
    • et al.

    Single-cell transcriptomics reveals the landscape of intra-tumoral heterogeneity and stemness-related subpopulations in liver cancer.

    Cancer letters. 2019; 459: 176-185

    • JU Marquardt
    • Andersen J.B.
    • Thorgeirsson S.S.

    Functional and genetic deconstruction of the cellular origin in liver cancer.

    Nat Rev Cancer. 2015; 15: 653-667

    • Puram S.V.
    • Tirosh I.
    • Parikh A.S.
    • Patel A.P.
    • Yizhak K.
    • Gillespie S.
    • et al.

    Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer.

    Cell. 2017; 171 (): 1611-1624

  • Finn RS, Ducreux M, Qin S, Galle PR, Zhu AX, Ikeda M, et al. IMbrave150: A randomized phase III study of 1L atezolizumab plus bevacizumab vs sorafenib in locally advanced or metastatic hepatocellular carcinoma. Journal of Clinical Oncology. 2018;36(15_suppl):TPS4141-TPS4141.

    • Chen M.L.
    • Yan B.S.
    • Lu W.C.
    • Chen M.H.
    • Yu S.L.
    • Yang P.C.
    • et al.

    Sorafenib relieves cell-intrinsic and cell-extrinsic inhibitions of effector T cells in tumor microenvironment to augment antitumor immunity.

    Int J Cancer. 2014; 134: 319-331

    • Sprinzl M.F.
    • Reisinger F.
    • Puschnik A.
    • Ringelhan M.
    • Ackermann K.
    • Hartmann D.
    • et al.

    Sorafenib perpetuates cellular anticancer effector functions by modulating the crosstalk between macrophages and natural killer cells.

    Hepatology. 2013; 57: 2358-2368

    • Wu X.
    • Luo H.
    • Shi B.
    • Di S.
    • Sun R.
    • Su J.
    • et al.

    Combined Antitumor Effects of Sorafenib and GPC3-CAR T Cells in Mouse Models of Hepatocellular Carcinoma.

    Molecular therapy : the journal of the American Society of Gene Therapy. 2019; 27: 1483-1494

    • Zheng C.
    • Zheng L.
    • Yoo J.K.
    • Guo H.
    • Zhang Y.
    • Guo X.
    • et al.

    Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing.

    Cell. 2017; 169 (): 1342-1356

    • Wang X.
    • He Q.
    • Shen H.
    • Lu X.J.
    • Sun B.

    Genetic and phenotypic difference in CD8(+) T cell exhaustion between chronic hepatitis B infection and hepatocellular carcinoma.

    J Med Genet. 2019; 56: 18-21

    • Shi F.
    • Shi M.
    • Zeng Z.
    • Qi R.Z.
    • Liu Z.W.
    • Zhang J.Y.
    • et al.

    PD-1 and PD-L1 upregulation promotes CD8(+) T-cell apoptosis and postoperative recurrence in hepatocellular carcinoma patients.

    Int J Cancer. 2011; 128: 887-896

    • Wherry E.J.
    • Ha S.J.
    • Kaech S.M.
    • Haining W.N.
    • Sarkar S.
    • Kalia V.
    • et al.

    Molecular signature of CD8+ T cell exhaustion during chronic viral infection.

    Immunity. 2007; 27: 670-684

    • Fuertes Marraco S.A.
    • Neubert N.J.
    • Verdeil G.
    • Speiser D.E.

    Inhibitory Receptors Beyond T Cell Exhaustion.

    Front Immunol. 2015; 6: 310

    • Trapnell C.
    • Cacchiarelli D.
    • Grimsby J.
    • Pokharel P.
    • Li S.
    • Morse M.
    • et al.

    The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells.

    Nature biotechnology. 2014; 32: 381-386

    • Cao J.
    • Spielmann M.
    • Qiu X.
    • Huang X.
    • Ibrahim D.M.
    • Hill A.J.
    • et al.

    The single-cell transcriptional landscape of mammalian organogenesis.

    Nature. 2019; 566: 496-502

  • Campbell K, Ponting CP, Webber C. Laplacian eigenmaps and principal curves for high resolution pseudotemporal ordering of single-cell RNA-seq profiles. 2015:027219.

  • Cannoodt R, Saelens W, Sichien D, Tavernier S, Janssens S, Guilliams M, et al. SCORPIUS improves trajectory inference and identifies novel modules in dendritic cell development. 2016:079509.

  • TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis.

    Nucleic acids research. 2016; 44: e117

    • Han A.
    • Glanville J.
    • Hansmann L.
    • Davis M.M.

    Linking T-cell receptor sequence to functional phenotype at the single-cell level.

    Nature biotechnology. 2014; 32: 684-692

    • Shi L.
    • Zhang Y.
    • Feng L.
    • Wang L.
    • Rong W.
    • Wu F.
    • et al.

    Multi-omics study revealing the complexity and spatial heterogeneity of tumor-infiltrating lymphocytes in primary liver carcinoma.

    Oncotarget. 2017; 8: 34844-34857

    • Agdashian D.
    • ElGindi M.
    • Xie C.
    • Sandhu M.
    • Pratt D.
    • Kleiner D.E.
    • et al.

    The effect of anti-CTLA4 treatment on peripheral and intra-tumoral T cells in patients with hepatocellular carcinoma.

    Cancer immunology, immunotherapy : CII. 2019; 68: 599-608

    • Tran E.
    • Robbins P.F.
    • Lu Y.C.
    • Prickett T.D.
    • Gartner J.J.
    • Jia L.
    • et al.

    T-Cell Transfer Therapy Targeting Mutant KRAS in Cancer.

    N Engl J Med. 2016; 375: 2255-2262

    • den Brok M.H.
    • Sutmuller R.P.
    • van der Voort R.
    • Bennink E.J.
    • Figdor C.G.
    • Ruers T.J.
    • et al.

    In situ tumor ablation creates an antigen source for the generation of antitumor immunity.

    Cancer Res. 2004; 64: 4024-4029

    • den Brok M.H.
    • Sutmuller R.P.
    • Nierkens S.
    • Bennink E.J.
    • Frielink C.
    • Toonen L.W.
    • et al.

    Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity.

    British journal of cancer. 2006; 95: 896-905

    • Greten T.F.
    • Mauda-Havakuk M.
    • Heinrich B.
    • Korangy F.
    • Wood B.J.

    Combined locoregional-immunotherapy for liver cancer.

    J Hepatol. 2019; 70: 999-1007

    • Zhang H.
    • Hou X.
    • Cai H.
    • Zhuang X.

    Effects of microwave ablation on T-cell subsets and cytokines of patients with hepatocellular carcinoma.

    Minimally invasive therapy & allied technologies : MITAT : official journal of the Society for Minimally Invasive Therapy. 2017; 26: 207-211

    • Hoechst B.
    • Ormandy L.A.
    • Ballmaier M.
    • Lehner F.
    • Kruger C.
    • Manns M.P.
    • et al.

    A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells.

    Gastroenterology. 2008; 135: 234-243

    • Arihara F.
    • Mizukoshi E.
    • Kitahara M.
    • Takata Y.
    • Arai K.
    • Yamashita T.
    • et al.

    Increase in CD14+HLA-DR -/low myeloid-derived suppressor cells in hepatocellular carcinoma patients and its impact on prognosis. Cancer immunology, immunotherapy.

    CII. 2013; 62: 1421-1430

    • Nobuoka D.
    • Motomura Y.
    • Shirakawa H.
    • Yoshikawa T.
    • Kuronuma T.
    • Takahashi M.
    • et al.

    Radiofrequency ablation for hepatocellular carcinoma induces glypican-3 peptide-specific cytotoxic T lymphocytes.

    International journal of oncology. 2012; 40: 63-70

    • Chew V.
    • Lee Y.H.
    • Pan L.
    • Nasir N.J.M.
    • Lim C.J.
    • Chua C.
    • et al.

    Immune activation underlies a sustained clinical response to Yttrium-90 radioembolisation in hepatocellular carcinoma.

    Gut. 2019; 68: 335-346

    • Apetoh L.
    • Mignot G.
    • Panaretakis T.
    • Kroemer G.
    • Zitvogel L.

    Immunogenicity of anthracyclines: moving towards more personalized medicine.

    Trends in molecular medicine. 2008; 14: 141-151

    • Mizukoshi E.
    • Yamashita T.
    • Arai K.
    • Sunagozaka H.
    • Ueda T.
    • Arihara F.
    • et al.

    Enhancement of tumor-associated antigen-specific T cell responses by radiofrequency ablation of hepatocellular carcinoma.

    Hepatology. 2013; 57: 1448-1457

    • Lim C.J.
    • Lee Y.H.
    • Pan L.
    • Lai L.
    • Chua C.
    • Wasser M.
    • et al.

    Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma.

    Gut. 2019; 68: 916-927

    • Shang B.
    • Liu Y.
    • Jiang S.J.
    • Liu Y.

    Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis.

    Scientific reports. 2015; 5: 15179

    • Duan M.
    • Goswami S.
    • Shi J.Y.
    • Wu L.J.
    • Wang X.Y.
    • Ma J.Q.
    • et al.

    Activated and Exhausted MAIT Cells Foster Disease Progression and Indicate Poor Outcome in Hepatocellular Carcinoma.

    Clinical cancer research : an official journal of the American Association for Cancer Research. 2019; 25: 3304-3316

    • Kurioka A.
    • Ussher J.E.
    • Cosgrove C.
    • Clough C.
    • Fergusson J.R.
    • Smith K.
    • et al.

    MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets.

    Mucosal Immunol. 2015; 8: 429-440

    • Maniatis S.
    • Äijö T.
    • Vickovic S.
    • Braine C.
    • Kang K.
    • Mollbrink A.
    • et al.

    Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis.

    Science (New York, NY). 2019; 364: 89-93

    • Losic B.
    • Craig A.J.
    • Villacorta-Martin C.
    • Martins-Filho S.N.
    • Akers N.
    • Chen X.
    • et al.

    Intratumoral heterogeneity and clonal evolution in liver cancer.

    Nature communications. 2020; 11: 291

    • Rooney M.S.
    • Shukla S.A.
    • Wu C.J.
    • Getz G.
    • Hacohen N.

    Molecular and genetic properties of tumors associated with local immune cytolytic activity.

    Cell. 2015; 160: 48-61

    • Jamal-Hanjani M.
    • Wilson G.A.
    • McGranahan N.
    • Birkbak N.J.
    • Watkins T.B.K.
    • Veeriah S.
    • et al.

    Tracking the Evolution of Non-Small-Cell Lung Cancer.

    N Engl J Med. 2017; 376: 2109-2121

    • Rizvi N.A.
    • Hellmann M.D.
    • Snyder A.
    • Kvistborg P.
    • Makarov V.
    • Havel J.J.
    • et al.

    Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer.

    Science. 2015; 348: 124-128

    • Le D.T.
    • Durham J.N.
    • Smith K.N.
    • Wang H.
    • Bartlett B.R.
    • Aulakh L.K.
    • et al.

    Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade.

    Science. 2017; 357: 409-413

    • McGranahan N.
    • Furness A.J.
    • Rosenthal R.
    • Ramskov S.
    • Lyngaa R.
    • Saini S.K.
    • et al.

    Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade.

    Science. 2016; 351: 1463-1469

    • Li S.C.
    • Tachiki L.M.
    • Kabeer M.H.
    • Dethlefs B.A.
    • Anthony M.J.
    • Loudon W.G.

    Cancer genomic research at the crossroads: realizing the changing genetic landscape as intratumoral spatial and temporal heterogeneity becomes a confounding factor.

    Cancer Cell Int. 2014; 14: 115

    • D’Avola D.
    • Villacorta-Martin C.
    • Martins-Filho S.N.
    • Craig A.
    • Labgaa I.
    • von Felden J.
    • et al.

    High-density single cell mRNA sequencing to characterize circulating tumor cells in hepatocellular carcinoma.

    Scientific reports. 2018; 8: 11570

    • Motzer R.J.
    • Tannir N.M.
    • McDermott D.F.
    • Aren Frontera O.
    • Melichar B.
    • Choueiri T.K.
    • et al.

    Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma.

    N Engl J Med. 2018; 378: 1277-1290

    • Wolchok J.D.
    • Chiarion-Sileni V.
    • Gonzalez R.
    • Rutkowski P.
    • Grob J.J.
    • Cowey C.L.
    • et al.

    Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma.

    N Engl J Med. 2017; 377: 1345-1356

    • Hellmann M.D.
    • Paz-Ares L.
    • Bernabe Caro R.
    • Zurawski B.
    • Kim S.W.
    • Carcereny Costa E.
    • et al.

    Nivolumab plus Ipilimumab in Advanced Non-Small-Cell Lung Cancer.

    N Engl J Med. 2019; 381: 2020-2031

  • Kelley RK, Abou-Alfa GK, Bendell JC, Kim T-Y, Borad MJ, Yong W-P, et al. Phase I/II study of durvalumab and tremelimumab in patients with unresectable hepatocellular carcinoma (HCC): Phase I safety and efficacy analyses. 2017;35(15_suppl):4073-4073.

    • Heinrich S.
    • Castven D.
    • Galle P.R.
    • JU Marquardt

    Translational Considerations to Improve Response and Overcome Therapy Resistance in Immunotherapy for Hepatocellular Carcinoma.

    Cancers. 2020; 12

    • Herbst R.S.
    • Soria J.C.
    • Kowanetz M.
    • Fine G.D.
    • Hamid O.
    • Gordon M.S.
    • et al.

    Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients.

    Nature. 2014; 515: 563-567

    • Daud A.I.
    • Wolchok J.D.
    • Robert C.
    • Hwu W.J.
    • Weber J.S.
    • Ribas A.
    • et al.

    Programmed Death-Ligand 1 Expression and Response to the Anti-Programmed Death 1 Antibody Pembrolizumab in Melanoma.

    Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2016; 34: 4102-4109

    • Topalian S.L.
    • Hodi F.S.
    • Brahmer J.R.
    • Gettinger S.N.
    • Smith D.C.
    • McDermott D.F.
    • et al.

    Safety, activity, and immune correlates of anti-PD-1 antibody in cancer.

    N Engl J Med. 2012; 366: 2443-2454

    • Goumard C.
    • Desbois-Mouthon C.
    • Wendum D.
    • Calmel C.
    • Merabtene F.
    • Scatton O.
    • et al.

    Low Levels of Microsatellite Instability at Simple Repeated Sequences Commonly Occur in Human Hepatocellular Carcinoma.

    Cancer genomics & proteomics. 2017; 14: 329-339

    • Cao J.
    • Cusanovich D.A.
    • Ramani V.
    • Aghamirzaie D.
    • Pliner H.A.
    • Hill A.J.
    • et al.

    Joint profiling of chromatin accessibility and gene expression in thousands of single cells.

    Science (New York, NY). 2018; 361: 1380-1385

  • Moffitt JR, Bambah-Mukku D, Eichhorn SW, Vaughn E, Shekhar K, Perez JD, et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science (New York, NY). 2018;362(6416):eaau5324.

    • Angermueller C.
    • Clark S.J.
    • Lee H.J.
    • Macaulay I.C.
    • Teng M.J.
    • Hu T.X.
    • et al.

    Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity.

    Nature methods. 2016; 13: 229-232

    • Ståhl P.L.
    • Salmén F.
    • Vickovic S.
    • Lundmark A.
    • Navarro J.F.
    • Magnusson J.
    • et al.

    Visualization and analysis of gene expression in tissue sections by spatial transcriptomics.

    Science (New York, NY). 2016; 353: 78-82

  • Translating insights into tumor evolution to clinical practice: promises and challenges.

    Genome Med. 2019; 11: 20

  • Cancer genomics: one cell at a time.

    Genome Biol. 2014; 15: 452

    • Bluestone J.A.
    • Mackay C.R.
    • O’shea J.J.
    • Stockinger B.

    The functional plasticity of T cell subsets.

    Nature Reviews Immunology. 2009; 9: 811-816

    • Bluestone J.A.
    • Mackay C.R.
    • O’shea J.J.
    • Stockinger B.

    The functional plasticity of T cell subsets.

    Nature Reviews Immunology. 2009; 9: 811-816

  • Floudas CS, Xie C, Brar G, Morelli MP, Fioravanti S, Walker M, et al. Combined immune checkpoint inhibition (ICI) with tremelimumab and durvalumab in patients with advanced hepatocellular carcinoma (HCC) or biliary tract carcinomas (BTC). Journal of Clinical Oncology. 2019;37(4_suppl):336-336.

    • Finn R.S.
    • Qin S.
    • Ikeda M.
    • Galle P.R.
    • Ducreux M.
    • Kim T.Y.
    • et al.

    Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma.

    N Engl J Med. 2020; 382: 1894-1905

    • Zhang Q.
    • Zhang Z.
    • Peng M.
    • Fu S.
    • Xue Z.
    • Zhang R.

    CAR-T cell therapy in gastrointestinal tumors and hepatic carcinoma: From bench to bedside.

    Oncoimmunology. 2016; 5e1251539

    • Gao H.
    • Li K.
    • Tu H.
    • Pan X.
    • Jiang H.
    • Shi B.
    • et al.

    Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma.

    Clinical cancer research : an official journal of the American Association for Cancer Research. 2014; 20: 6418-6428

    • Yu M.
    • Luo H.
    • Fan M.
    • Wu X.
    • Shi B.
    • Di S.
    • et al.

    Development of GPC3-Specific Chimeric Antigen Receptor-Engineered Natural Killer Cells for the Treatment of Hepatocellular Carcinoma.

    Molecular therapy : the journal of the American Society of Gene Therapy. 2018; 26: 366-378

    • Jiang Z.
    • Jiang X.
    • Chen S.
    • Lai Y.
    • Wei X.
    • Li B.
    • et al.

    Anti-GPC3-CAR T Cells Suppress the Growth of Tumor Cells in Patient-Derived Xenografts of Hepatocellular Carcinoma.

    Front Immunol. 2016; 7: 690

    • Newman A.M.
    • Steen C.B.
    • Liu C.L.
    • Gentles A.J.
    • Chaudhuri A.A.
    • Scherer F.
    • et al.

    Determining cell type abundance and expression from bulk tissues with digital cytometry.

    Nature biotechnology. 2019; 37: 773-782

    • Rohr-Udilova N.
    • Klinglmüller F.
    • Schulte-Hermann R.
    • Stift J.
    • Herac M.
    • Salzmann M.
    • et al.

    Deviations of the immune cell landscape between healthy liver and hepatocellular carcinoma.

    Scientific reports. 2018; 8: 6220

  • Source Link

    Related Articles

    Leave a Comment

    This website uses cookies to improve your experience. We will assume you are ok with this, but you can opt-out if you wish. Accept Read More

    %d bloggers like this: