Bedogni, G., Nobili, V. & Tiribelli, C. Epidemiology of fatty liver: An update. World J Gastroenterol 20, 9050–9054, https://doi.org/10.3748/wjg.v20.i27.9050 (2014).
Fargion, S., Porzio, M. & Fracanzani, A. L. Nonalcoholic fatty liver disease and vascular disease: state-of-the-art. World J Gastroenterol 20, 13306–13324, https://doi.org/10.3748/wjg.v20.i37.13306 (2014).
Targher, G. & Arcaro, G. Non-alcoholic fatty liver disease and increased risk of cardiovascular disease. Atherosclerosis 191, 235–240, https://doi.org/10.1016/j.atherosclerosis.2006.08.021 (2007).
Lai, L. L., Wan Yusoff, W. N. I., Vethakkan, S. R., Nik Mustapha, N. R. & Mahadeva, S. Screening for non-alcoholic fatty liver disease in patients with type 2 diabetes mellitus using transient elastography, https://doi.org/10.1111/jgh.14577 (2018).
Kabir, M. A. et al. Prevalence of Non-Alcoholic Fatty Liver Disease and Its Biochemical Predictors in Patients with Type-2 Diabetes Mellitus. Mymensingh Med J 27, 237–244 (2018).
Anstee, Q. M., Targher, G. & Day, C. P. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol 10, 330–344, https://doi.org/10.1038/nrgastro.2013.41 (2013).
Browning, J. D. & Horton, J. D. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest 114, 147–152, https://doi.org/10.1172/JCI22422 (2004).
Donnelly, K. L. et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 115, 1343–1351 (2005).
Postic, C. & Girard, J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest 118, 829–838, https://doi.org/10.1172/JCI34275 (2008).
Shi, Y. & Cheng, D. Beyond triglyceride synthesis: the dynamic functional roles of MGAT and DGAT enzymes in energy metabolism. Am J Physiol Endocrinol Metab 297, E10–18 (2009).
Yen, C. L., Stone, S. J., Koliwad, S., Harris, C. & Farese, R. V. Jr. Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res 49, 2283–2301, https://doi.org/10.1194/jlr.R800018-JLR200 (2008).
Choi, C. S. et al. Suppression of diacylglycerol acyltransferase-2 (DGAT2), but not DGAT1, with antisense oligonucleotides reverses diet-induced hepatic steatosis and insulin resistance. J Biol Chem 282, 22678–22688, https://doi.org/10.1074/jbc.M704213200 (2007).
Jornayvaz, F. R. et al. Hepatic insulin resistance in mice with hepatic overexpression of diacylglycerol acyltransferase 2. Proc Natl Acad Sci U S A 108, 5748–5752, https://doi.org/10.1073/pnas.1103451108 (2011).
Kim, M. O. et al. Identification and validation of a selective small molecule inhibitor targeting the diacylglycerol acyltransferase 2 activity. Biol Pharm Bull 36, 1167–1173 (2013).
Liu, Y. et al. Knockdown of acyl-CoA:diacylglycerol acyltransferase 2 with antisense oligonucleotide reduces VLDL TG and ApoB secretion in mice. Biochim Biophys Acta 1781, 97–104, https://doi.org/10.1016/j.bbalip.2008.01.001 (2008).
Stone, S. J. et al. Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. Journal of Biological Chemistry 279, 11767–11776 (2004).
Monetti, M. et al. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell metabolism 6, 69–78, https://doi.org/10.1016/j.cmet.2007.05.005 (2007).
Yu, X. X. et al. Antisense oligonucleotide reduction of DGAT2 expression improves hepatic steatosis and hyperlipidemia in obese mice. Hepatology (Baltimore, Md.) 42, 362–371, https://doi.org/10.1002/hep.20783 (2005).
Breitkopf-Heinlein, K. et al. BMP-9 interferes with liver regeneration and promotes liver fibrosis. Gut 66, 939–954, https://doi.org/10.1136/gutjnl-2016-313314 (2017).
Sugimoto, H. et al. BMP-7 functions as a novel hormone to facilitate liver regeneration. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 21, 256–264, https://doi.org/10.1096/fj.06-6837com (2007).
Wang, L. P. et al. BMP-7 attenuates liver fibrosis via regulation of epidermal growth factor receptor. International journal of clinical and experimental pathology 7, 3537–3547 (2014).
Chen, D., Zhao, M. & Mundy, G. R. Bone morphogenetic proteins. Growth Factors 22, 233–241, https://doi.org/10.1080/08977190412331279890 (2004).
Massague, J. How cells read TGF-beta signals. Nat Rev Mol Cell Biol 1, 169–178, https://doi.org/10.1038/35043051 (2000).
Anstee, Q. M. & Goldin, R. D. Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int J Exp Pathol 87, 1–16, https://doi.org/10.1111/j.0959-9673.2006.00465.x (2006).
Takahashi, Y., Soejima, Y. & Fukusato, T. Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol 18, 2300–2308, https://doi.org/10.3748/wjg.v18.i19.2300 (2012).
Hebbard, L. & George, J. Animal models of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 8, 35–44, https://doi.org/10.1038/nrgastro.2010.191 (2011).
Yu, P. B. et al. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nature chemical biology 4, 33–41, https://doi.org/10.1038/nchembio.2007.54 (2008).
Takeuchi, K. & Reue, K. Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am J Physiol Endocrinol Metab 296, E1195–1209 (2009).
Zhou, L. et al. Cidea promotes hepatic steatosis by sensing dietary fatty acids. Hepatology (Baltimore, Md.) 56, 95–107, https://doi.org/10.1002/hep.25611 (2012).
Chavez-Tapia, N. C., Rosso, N. & Tiribelli, C. In vitro models for the study of non-alcoholic fatty liver disease. Curr Med Chem 18, 1079–1084 (2011).
Pulley, J., Clayton, E., Bernard, G. R., Roden, D. M. & Masys, D. R. Principles of human subjects protections applied in an opt-out, de-identified biobank. Clin Transl Sci 3, 42–48, https://doi.org/10.1111/j.1752-8062.2010.00175.x (2010).
Dumitrescu, L. et al. Assessing the accuracy of observer-reported ancestry in a biorepository linked to electronic medical records. Genet Med 12, 648–650, https://doi.org/10.1097/GIM.0b013e3181efe2df (2010).
Ritchie, M. D. et al. Robust replication of genotype-phenotype associations across multiple diseases in an electronic medical record. Am J Hum Genet 86, 560–572, https://doi.org/10.1016/j.ajhg.2010.03.003 (2010).
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res 45, D158–D169, https://doi.org/10.1093/nar/gkw1099 (2017).
Wieser, R., Wrana, J. L. & Massague, J. GS domain mutations that constitutively activate T beta R-I, the downstream signaling component in the TGF-beta receptor complex. The EMBO journal 14, 2199–2208 (1995).
Derwall, M. et al. Inhibition of bone morphogenetic protein signaling reduces vascular calcification and atherosclerosis. Arteriosclerosis, thrombosis, and vascular biology 32, 613–622 (2012).
Graham, B. B., Robinson, J. C. & Tuder, R. M. Fatty Acid Metabolism, Bone Morphogenetic Protein Receptor Type 2, and the Right Ventricle. American journal of respiratory and critical care medicine 194, 655–656, https://doi.org/10.1164/rccm.201603-0592ED (2016).
Tseng, Y. H. et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454, 1000–1004, https://doi.org/10.1038/nature07221 (2008).
Boergermann, J. H., Kopf, J., Yu, P. B. & Knaus, P. Dorsomorphin and LDN-193189 inhibit BMP-mediated Smad, p38 and Akt signalling in C2C12 cells. Int J Biochem Cell Biol 42, 1802–1807 (2010).
Baud’huin, M. et al. A soluble bone morphogenetic protein type IA receptor increases bone mass and bone strength. Proceedings of the National Academy of Sciences 109, 12207, https://doi.org/10.1073/pnas.1204929109 (2012).
Kantartzis, K. et al. The DGAT2 gene is a candidate for the dissociation between fatty liver and insulin resistance in humans. Clin Sci (Lond) 116, 531–537, https://doi.org/10.1042/cs20080306 (2009).
Macaluso, F. S., Maida, M. & Petta, S. Genetic background in nonalcoholic fatty liver disease: A comprehensive review. World J Gastroenterol 21, 11088–11111, https://doi.org/10.3748/wjg.v21.i39.11088 (2015).
Speliotes, E. K. et al. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. Plos Genetics 7, e1001324, https://doi.org/10.1371/journal.pgen.1001324 (2011).
Kahali, B., Halligan, B. & Speliotes, E. K. Insights from Genome-Wide Association Analyses of Nonalcoholic Fatty Liver Disease. Seminars in liver disease 35, 375–391, https://doi.org/10.1055/s-0035-1567870 (2015).
Speliotes, E. K. et al. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. Plos Genetics 7, e1001324, https://doi.org/10.1371/journal.pgen.1001324 (2011).
Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nature Genetics 40, 1461–1465, https://doi.org/10.1038/ng.257 (2008).
Agarwal, S. et al. Strategic Targeting of Multiple BMP Receptors Prevents Trauma-Induced Heterotopic Ossification. Molecular Therapy 25, 1974–1987, https://doi.org/10.1016/j.ymthe.2017.01.008 (2017).
Ayala, J. E. et al. Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Disease Models & Mechanisms 3, 525–534 (2010).
Gomez-Lechon, M. J. et al. A human hepatocellular in vitro model to investigate steatosis. Chem Biol Interact 165, 106–116 (2007).
Cui, W., Chen, S. L. & Hu, K. Q. Quantification and mechanisms of oleic acid-induced steatosis in HepG2 cells. Am J Transl Res 2, 95–104 (2010).
Lin, C. L., Huang, H. C. & Lin, J. K. Theaflavins attenuate hepatic lipid accumulation through activating AMPK in human HepG2 cells. J Lipid Res 48, 2334–2343, https://doi.org/10.1194/jlr.M700128-JLR200 (2007).
McFie, P. J. & Stone, S. J. A fluorescent assay to quantitatively measure in vitro acyl CoA:diacylglycerol acyltransferase activity. J Lipid Res 52, 1760–1764, https://doi.org/10.1194/jlr.D016626 (2011).
Kim, T. H. & Dekker, J. ChIP-Quantitative Polymerase Chain Reaction (ChIP-qPCR). Cold Spring Harbor protocols 2018, pdb.prot082628, https://doi.org/10.1101/pdb.prot082628 (2018).
Hao, J. et al. In vivo structure-activity relationship study of dorsomorphin analogues identifies selective VEGF and BMP inhibitors. ACS chemical biology 5, 245–253, https://doi.org/10.1021/cb9002865 (2010).
Zilberberg, L., ten Dijke, P., Sakai, L. Y. & Rifkin, D. B. A rapid and sensitive bioassay to measure bone morphogenetic protein activity. BMC Cell Biol 8, 41, https://doi.org/10.1186/1471-2121-8-41 (2007).
Roden, D. M. et al. Development of a large-scale de-identified DNA biobank to enable personalized medicine. Clinical pharmacology and therapeutics 84, 362–369, https://doi.org/10.1038/clpt.2008.89 (2008).
Kotronen, A. et al. Non-alcoholic and alcoholic fatty liver disease – two diseases of affluence associated with the metabolic syndrome and type 2 diabetes: the FIN-D2D survey. BMC public health 10, 237, https://doi.org/10.1186/1471-2458-10-237 (2010).