Home Liver Diseases The Role of Bone Morphogenetic Protein Signaling in Non-Alcoholic Fatty Liver Disease

The Role of Bone Morphogenetic Protein Signaling in Non-Alcoholic Fatty Liver Disease

Credits to the Source Link Daniel
The Role of Bone Morphogenetic Protein Signaling in Non-Alcoholic Fatty Liver Disease
  • 1.

    Bedogni, G., Nobili, V. & Tiribelli, C. Epidemiology of fatty liver: An update. World J Gastroenterol 20, 9050–9054, https://doi.org/10.3748/wjg.v20.i27.9050 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Fargion, S., Porzio, M. & Fracanzani, A. L. Nonalcoholic fatty liver disease and vascular disease: state-of-the-art. World J Gastroenterol 20, 13306–13324, https://doi.org/10.3748/wjg.v20.i37.13306 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Targher, G. & Arcaro, G. Non-alcoholic fatty liver disease and increased risk of cardiovascular disease. Atherosclerosis 191, 235–240, https://doi.org/10.1016/j.atherosclerosis.2006.08.021 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 4.

    Lai, L. L., Wan Yusoff, W. N. I., Vethakkan, S. R., Nik Mustapha, N. R. & Mahadeva, S. Screening for non-alcoholic fatty liver disease in patients with type 2 diabetes mellitus using transient elastography, https://doi.org/10.1111/jgh.14577 (2018).

  • 5.

    Kabir, M. A. et al. Prevalence of Non-Alcoholic Fatty Liver Disease and Its Biochemical Predictors in Patients with Type-2 Diabetes Mellitus. Mymensingh Med J 27, 237–244 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Anstee, Q. M., Targher, G. & Day, C. P. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol 10, 330–344, https://doi.org/10.1038/nrgastro.2013.41 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 7.

    Browning, J. D. & Horton, J. D. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest 114, 147–152, https://doi.org/10.1172/JCI22422 (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Donnelly, K. L. et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 115, 1343–1351 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Postic, C. & Girard, J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest 118, 829–838, https://doi.org/10.1172/JCI34275 (2008).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Shi, Y. & Cheng, D. Beyond triglyceride synthesis: the dynamic functional roles of MGAT and DGAT enzymes in energy metabolism. Am J Physiol Endocrinol Metab 297, E10–18 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Yen, C. L., Stone, S. J., Koliwad, S., Harris, C. & Farese, R. V. Jr. Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res 49, 2283–2301, https://doi.org/10.1194/jlr.R800018-JLR200 (2008).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Choi, C. S. et al. Suppression of diacylglycerol acyltransferase-2 (DGAT2), but not DGAT1, with antisense oligonucleotides reverses diet-induced hepatic steatosis and insulin resistance. J Biol Chem 282, 22678–22688, https://doi.org/10.1074/jbc.M704213200 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 13.

    Jornayvaz, F. R. et al. Hepatic insulin resistance in mice with hepatic overexpression of diacylglycerol acyltransferase 2. Proc Natl Acad Sci U S A 108, 5748–5752, https://doi.org/10.1073/pnas.1103451108 (2011).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Kim, M. O. et al. Identification and validation of a selective small molecule inhibitor targeting the diacylglycerol acyltransferase 2 activity. Biol Pharm Bull 36, 1167–1173 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Liu, Y. et al. Knockdown of acyl-CoA:diacylglycerol acyltransferase 2 with antisense oligonucleotide reduces VLDL TG and ApoB secretion in mice. Biochim Biophys Acta 1781, 97–104, https://doi.org/10.1016/j.bbalip.2008.01.001 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 16.

    Stone, S. J. et al. Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. Journal of Biological Chemistry 279, 11767–11776 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Monetti, M. et al. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell metabolism 6, 69–78, https://doi.org/10.1016/j.cmet.2007.05.005 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 18.

    Yu, X. X. et al. Antisense oligonucleotide reduction of DGAT2 expression improves hepatic steatosis and hyperlipidemia in obese mice. Hepatology (Baltimore, Md.) 42, 362–371, https://doi.org/10.1002/hep.20783 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Breitkopf-Heinlein, K. et al. BMP-9 interferes with liver regeneration and promotes liver fibrosis. Gut 66, 939–954, https://doi.org/10.1136/gutjnl-2016-313314 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 20.

    Sugimoto, H. et al. BMP-7 functions as a novel hormone to facilitate liver regeneration. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 21, 256–264, https://doi.org/10.1096/fj.06-6837com (2007).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Wang, L. P. et al. BMP-7 attenuates liver fibrosis via regulation of epidermal growth factor receptor. International journal of clinical and experimental pathology 7, 3537–3547 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Chen, D., Zhao, M. & Mundy, G. R. Bone morphogenetic proteins. Growth Factors 22, 233–241, https://doi.org/10.1080/08977190412331279890 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 23.

    Massague, J. How cells read TGF-beta signals. Nat Rev Mol Cell Biol 1, 169–178, https://doi.org/10.1038/35043051 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 24.

    Anstee, Q. M. & Goldin, R. D. Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int J Exp Pathol 87, 1–16, https://doi.org/10.1111/j.0959-9673.2006.00465.x (2006).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Takahashi, Y., Soejima, Y. & Fukusato, T. Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol 18, 2300–2308, https://doi.org/10.3748/wjg.v18.i19.2300 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Hebbard, L. & George, J. Animal models of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 8, 35–44, https://doi.org/10.1038/nrgastro.2010.191 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 27.

    Yu, P. B. et al. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nature chemical biology 4, 33–41, https://doi.org/10.1038/nchembio.2007.54 (2008).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 28.

    Takeuchi, K. & Reue, K. Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am J Physiol Endocrinol Metab 296, E1195–1209 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Zhou, L. et al. Cidea promotes hepatic steatosis by sensing dietary fatty acids. Hepatology (Baltimore, Md.) 56, 95–107, https://doi.org/10.1002/hep.25611 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Chavez-Tapia, N. C., Rosso, N. & Tiribelli, C. In vitro models for the study of non-alcoholic fatty liver disease. Curr Med Chem 18, 1079–1084 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Pulley, J., Clayton, E., Bernard, G. R., Roden, D. M. & Masys, D. R. Principles of human subjects protections applied in an opt-out, de-identified biobank. Clin Transl Sci 3, 42–48, https://doi.org/10.1111/j.1752-8062.2010.00175.x (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Dumitrescu, L. et al. Assessing the accuracy of observer-reported ancestry in a biorepository linked to electronic medical records. Genet Med 12, 648–650, https://doi.org/10.1097/GIM.0b013e3181efe2df (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Ritchie, M. D. et al. Robust replication of genotype-phenotype associations across multiple diseases in an electronic medical record. Am J Hum Genet 86, 560–572, https://doi.org/10.1016/j.ajhg.2010.03.003 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res 45, D158–D169, https://doi.org/10.1093/nar/gkw1099 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Wieser, R., Wrana, J. L. & Massague, J. GS domain mutations that constitutively activate T beta R-I, the downstream signaling component in the TGF-beta receptor complex. The EMBO journal 14, 2199–2208 (1995).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Derwall, M. et al. Inhibition of bone morphogenetic protein signaling reduces vascular calcification and atherosclerosis. Arteriosclerosis, thrombosis, and vascular biology 32, 613–622 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Graham, B. B., Robinson, J. C. & Tuder, R. M. Fatty Acid Metabolism, Bone Morphogenetic Protein Receptor Type 2, and the Right Ventricle. American journal of respiratory and critical care medicine 194, 655–656, https://doi.org/10.1164/rccm.201603-0592ED (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Tseng, Y. H. et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454, 1000–1004, https://doi.org/10.1038/nature07221 (2008).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Boergermann, J. H., Kopf, J., Yu, P. B. & Knaus, P. Dorsomorphin and LDN-193189 inhibit BMP-mediated Smad, p38 and Akt signalling in C2C12 cells. Int J Biochem Cell Biol 42, 1802–1807 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Baud’huin, M. et al. A soluble bone morphogenetic protein type IA receptor increases bone mass and bone strength. Proceedings of the National Academy of Sciences 109, 12207, https://doi.org/10.1073/pnas.1204929109 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 41.

    Kantartzis, K. et al. The DGAT2 gene is a candidate for the dissociation between fatty liver and insulin resistance in humans. Clin Sci (Lond) 116, 531–537, https://doi.org/10.1042/cs20080306 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 42.

    Macaluso, F. S., Maida, M. & Petta, S. Genetic background in nonalcoholic fatty liver disease: A comprehensive review. World J Gastroenterol 21, 11088–11111, https://doi.org/10.3748/wjg.v21.i39.11088 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Speliotes, E. K. et al. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. Plos Genetics 7, e1001324, https://doi.org/10.1371/journal.pgen.1001324 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Kahali, B., Halligan, B. & Speliotes, E. K. Insights from Genome-Wide Association Analyses of Nonalcoholic Fatty Liver Disease. Seminars in liver disease 35, 375–391, https://doi.org/10.1055/s-0035-1567870 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Speliotes, E. K. et al. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. Plos Genetics 7, e1001324, https://doi.org/10.1371/journal.pgen.1001324 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nature Genetics 40, 1461–1465, https://doi.org/10.1038/ng.257 (2008).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Agarwal, S. et al. Strategic Targeting of Multiple BMP Receptors Prevents Trauma-Induced Heterotopic Ossification. Molecular Therapy 25, 1974–1987, https://doi.org/10.1016/j.ymthe.2017.01.008 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Ayala, J. E. et al. Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Disease Models & Mechanisms 3, 525–534 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 49.

    Gomez-Lechon, M. J. et al. A human hepatocellular in vitro model to investigate steatosis. Chem Biol Interact 165, 106–116 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 50.

    Cui, W., Chen, S. L. & Hu, K. Q. Quantification and mechanisms of oleic acid-induced steatosis in HepG2 cells. Am J Transl Res 2, 95–104 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Lin, C. L., Huang, H. C. & Lin, J. K. Theaflavins attenuate hepatic lipid accumulation through activating AMPK in human HepG2 cells. J Lipid Res 48, 2334–2343, https://doi.org/10.1194/jlr.M700128-JLR200 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 52.

    McFie, P. J. & Stone, S. J. A fluorescent assay to quantitatively measure in vitro acyl CoA:diacylglycerol acyltransferase activity. J Lipid Res 52, 1760–1764, https://doi.org/10.1194/jlr.D016626 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Kim, T. H. & Dekker, J. ChIP-Quantitative Polymerase Chain Reaction (ChIP-qPCR). Cold Spring Harbor protocols 2018, pdb.prot082628, https://doi.org/10.1101/pdb.prot082628 (2018).

  • 54.

    Hao, J. et al. In vivo structure-activity relationship study of dorsomorphin analogues identifies selective VEGF and BMP inhibitors. ACS chemical biology 5, 245–253, https://doi.org/10.1021/cb9002865 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Zilberberg, L., ten Dijke, P., Sakai, L. Y. & Rifkin, D. B. A rapid and sensitive bioassay to measure bone morphogenetic protein activity. BMC Cell Biol 8, 41, https://doi.org/10.1186/1471-2121-8-41 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Roden, D. M. et al. Development of a large-scale de-identified DNA biobank to enable personalized medicine. Clinical pharmacology and therapeutics 84, 362–369, https://doi.org/10.1038/clpt.2008.89 (2008).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Kotronen, A. et al. Non-alcoholic and alcoholic fatty liver disease – two diseases of affluence associated with the metabolic syndrome and type 2 diabetes: the FIN-D2D survey. BMC public health 10, 237, https://doi.org/10.1186/1471-2458-10-237 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source Link

    Related Articles

    Leave a Comment

    This website uses cookies to improve your experience. We will assume you are ok with this, but you can opt-out if you wish. Accept Read More

    %d bloggers like this: