Home Hepatitis Texture features from computed tomography correlate with markers of severity in acute alcohol-associated hepatitis

Texture features from computed tomography correlate with markers of severity in acute alcohol-associated hepatitis

Credits to the Source Link Daniel
Texture features from computed tomography correlate with markers of severity in acute alcohol-associated hepatitis
  • 1.

    Nguyen, T. A., DeShazo, J. P., Thacker, L. R., Puri, P. & Sanyal, A. J. The worsening profile of alcoholic hepatitis in the United States. Alcohol. Clin. Exp. Res. 40, 1295–1303 (2016).

    Article 

    Google Scholar
     

  • 2.

    Papastergiou, V., Burroughs, A. K. & Tsochatzis, E. A. Prognosis and treatment of patients with acute alcoholic hepatitis. Expert Rev. Gastroenterol. Hepatol. 8, 471–486 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Carithers, R. L. et al. Methylprednisolone therapy in patients with severe alcoholic hepatitis. A randomized multicenter trial. Ann. Intern. Med. 110, 685–690 (1989).

    Article 

    Google Scholar
     

  • 4.

    Lucey, M. R., Mathurin, P. & Morgan, T. R. Alcoholic hepatitis. N. Engl. J. Med. 360, 2758–2769 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    European Association for the Study of Liver. EASL clinical practical guidelines: Management of alcoholic liver disease. J. Hepatol. 57, 399–420 (2012).

    Article 

    Google Scholar
     

  • 6.

    Review by an International Group. Alcoholic liver disease: Morphological manifestations. Lancet 317, 707–711 (1981).

    Article 

    Google Scholar
     

  • 7.

    Srikureja, W., Kyulo, N. L., Runyon, B. A. & Hu, K.-Q. MELD score is a better prognostic model than Child-Turcotte-Pugh score or Discriminant Function score in patients with alcoholic hepatitis. J. Hepatol. 42, 700–706 (2005).

    Article 

    Google Scholar
     

  • 8.

    Maddrey, W. C. et al. Corticosteroid therapy of alcoholic hepatitis. Gastroenterology 75, 193–199 (1978).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Katoonizadeh, A. et al. Early features of acute-on-chronic alcoholic liver failure: A prospective cohort study. Gut 59, 1561–1569 (2010).

    Article 

    Google Scholar
     

  • 10.

    White, A. M., Castle, I.-J.P., Hingson, R. W. & Powell, P. A. Using death certificates to explore changes in alcohol-related mortality in the United States, 1999 to 2017. Alcohol. Clin. Exp. Res. 44, 178–187 (2020).

    Article 

    Google Scholar
     

  • 11.

    Thursz, M. & Morgan, T. R. Treatment of severe alcoholic hepatitis. Gastroenterology 150, 1823–1834 (2016).

    Article 

    Google Scholar
     

  • 12.

    Thursz, M. R. et al. Prednisolone or pentoxifylline for alcoholic hepatitis. N. Engl. J. Med. 372, 1619–1628 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Louvet, A. et al. The Lille model: A new tool for therapeutic strategy in patients with severe alcoholic hepatitis treated with steroids. Hepatology 45, 1348–1354 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Roth, N. C. et al. Prediction of histologic alcoholic hepatitis based on clinical presentation limits the need for liver biopsy. Hepatol. Commun. 1, 1070–1084 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Naveau, S. et al. Biomarkers for the prediction of liver fibrosis in patients with chronic alcoholic liver disease. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 3, 167–174 (2005).


    Google Scholar
     

  • 16.

    Naveau, S. et al. Diagnostic and prognostic values of noninvasive biomarkers of fibrosis in patients with alcoholic liver disease. Hepatology 49, 97–105 (2009).

    Article 

    Google Scholar
     

  • 17.

    Castellano, G., Bonilha, L., Li, L. M. & Cendes, F. Texture analysis of medical images. Clin. Radiol. 59, 1061–1069 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Mathias, J. M., Tofts, P. S. & Losseff, N. A. Texture analysis of spinal cord pathology in multiple sclerosis. Magn. Reson. Med. 42, 929–935 (1999).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Ganeshan, B., Abaleke, S., Young, R. C. D., Chatwin, C. R. & Miles, K. A. Texture analysis of non-small cell lung cancer on unenhanced computed tomography: Initial evidence for a relationship with tumour glucose metabolism and stage. Cancer Imaging Off. Publ. Int. Cancer Imaging Soc. 10, 137–143 (2010).


    Google Scholar
     

  • 20.

    Al-Kadi, O. S. & Watson, D. Texture analysis of aggressive and nonaggressive lung tumor CE CT images. IEEE Trans. Biomed. Eng. 55, 1822–1830 (2008).

    Article 

    Google Scholar
     

  • 21.

    van Ginneken, B., Katsuragawa, S., ter Haar Romeny, B. M., Doi, K. & Viergever, M. A. Automatic detection of abnormalities in chest radiographs using local texture analysis. IEEE Trans. Med. Imaging 21, 139–149 (2002).

    Article 

    Google Scholar
     

  • 22.

    Ganeshan, B., Panayiotou, E., Burnand, K., Dizdarevic, S. & Miles, K. Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: A potential marker of survival. Eur. Radiol. 22, 796–802 (2012).

    Article 

    Google Scholar
     

  • 23.

    Jirák, D., Dezortová, M., Taimr, P. & Hájek, M. Texture analysis of human liver. J. Magn. Reson. Imaging JMRI 15, 68–74 (2002).

    Article 

    Google Scholar
     

  • 24.

    Oosterveld, B. J., Thijssen, J. M., Hartman, P. C., Romijn, R. L. & Rosenbusch, G. J. Ultrasound attenuation and texture analysis of diffuse liver disease: Methods and preliminary results. Phys. Med. Biol. 36, 1039–1064 (1991).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Ganeshan, B., Miles, K. A., Young, R. C. D. & Chatwin, C. R. Texture analysis in non-contrast enhanced CT: Impact of malignancy on texture in apparently disease-free areas of the liver. Eur. J. Radiol. 70, 101–110 (2009).

    Article 

    Google Scholar
     

  • 26.

    Harris, P. A. Research Electronic Data Capture (REDCap)—Planning, collecting and managing data for clinical and translational research. BMC Bioinformatics 13, A15 (2012).

    Article 

    Google Scholar
     

  • 27.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    van der Walt, S. et al. scikit-image: Image processing in Python. PeerJ 2, e453 (2014).

    Article 

    Google Scholar
     

  • 29.

    Carlson, J. ‘Radiomic’ Image Processing Toolbox. https://cran.r-project.org/web/packages/radiomics/index.html (2018).

  • 30.

    Parmar, C. et al. Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS ONE 9, e102107 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 31.

    Kuhn, M. caret: Classification and Regression Training. Astrophys. Source Code Libr. ascl:1505.003 (2015).

  • 32.

    Combrisson, E. & Jerbi, K. Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy. J. Neurosci. Methods 250, 126–136 (2015).

    Article 

    Google Scholar
     

  • 33.

    van de Geer, S. On the efficiency of the de-biased Lasso.arXiv:1708.07986 [math.ST] (2017).

  • 34.

    Javanmard, A. & Montanari, A. De-biasing the Lasso: Optimal Sample Size for Gaussian Designs. arXiv:1508.02757 [math.ST] (2015).

  • 35.

    Huang, G., Liu, Z., van der Maaten, L. & Weinberger, K. Q. Densely Connected Convolutional Networks. arXiv:1608.06993 [cs.CV] (2016).

  • 36.

    Ioffe, S. & Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv:1502.03167 [cs.LG] (2015).

  • 37.

    Nair, V. & E. Hinton, G. Rectified linear units improve restricted Boltzmann machines Vinod Nair. In Proceedings of the 27th International Conference on Machine Learning (2010).

  • 38.

    Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 39.

    Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. In 3rd International Conference for Learning Representations (2015).

  • Source Link

    Related Articles

    Leave a Comment

    This website uses cookies to improve your experience. We will assume you are ok with this, but you can opt-out if you wish. Accept Read More

    %d bloggers like this: