Home Liver Research Subzero non-frozen preservation of human livers in the supercooled state

Subzero non-frozen preservation of human livers in the supercooled state

Credits to the Source Link Daniel
Subzero non-frozen preservation of human livers in the supercooled state
  • 1.

    Giwa, S. et al. The promise of organ and tissue preservation to transform medicine. Nat. Biotechnol. 35, 530–542 (2017).

  • 2.

    Buying time for transplants. Nat. Biotechnol. 35, 801 (2017).

  • 3.

    de Vries, R. J., Yarmush, M. & Uygun, K. Systems engineering the organ preservation process for transplantation. Curr. Opin. Biotechnol. 58, 192–201 (2019).

  • 4.

    Bruinsma, B. G. & Uygun, K. Subzero organ preservation: the dawn of a new ice age? Curr. Opin. Organ Transpl. 22, 281–286 (2017).

  • 5.

    Pan, E. T. et al. Cold ischemia time is an important risk factor for post-liver transplant prolonged length of stay. Liver Transpl. 24, 762–768 (2018).

  • 6.

    Usta, O. B. et al. Supercooling as a viable non-freezing cell preservation method of rat hepatocytes. PLoS ONE 8, e69334 (2013).

  • 7.

    Berendsen, T. A. et al. Supercooling enables long-term transplantation survival following 4 days of liver preservation. Nat. Med. 20, 790–793 (2014).

  • 8.

    Bruinsma, B. G. et al. Supercooling preservation and transplantation of the rat liver. Nat. Protoc. 10, 484–494 (2015).

  • 9.

    Huang, H., Yarmush, M. L. & Usta, O. B. Long-term deep-supercooling of large-volume water and red cell suspensions via surface sealing with immiscible liquids. Nat. Commun. 9, 3201 (2018).

  • 10.

    de Vries, R. J. et al. Supercooling extends preservation time of human livers. Nat. Biotechnol. 37, 1131–1136 (2019).

  • 11.

    Fuller, B. J., Petrenko, A. & Guibert, E. Human organs come out of the deep cold. Nat. Biotechnol. 37, 1127–1128 (2019).

  • 12.

    Guarrera, J. V. et al. Hypothermic machine preservation facilitates successful transplantation of “orphan” extended criteria donor livers: machine preservation of ECD livers. Am. J. Transpl. 15, 161–169 (2015).

  • 13.

    Muller, X. et al. Can hypothermic oxygenated perfusion (HOPE) rescue futile DCD liver grafts? HPB 21, 1156–1165 (2019).

  • 14.

    Schlegel, A. et al. Outcomes of DCD liver transplantation using organs treated by hypothermic oxygenated perfusion before implantation. J. Hepatol. 70, 50–57 (2019).

  • 15.

    Mergental, H. et al. Transplantation of declined liver allografts following normothermic ex-situ evaluation. Am. J. Transplant. 16, 3235–3245 (2016).

  • 16.

    Ravikumar, R. et al. Liver transplantation after ex vivo normothermic machine preservation: a phase 1 (first-in-man) clinical trial. Am. J. Transplant. 16, 1779–1787 (2016).

  • 17.

    Bral, M. et al. Preliminary single-center Canadian experience of human normothermic ex vivo liver perfusion: results of a clinical trial. Am. J. Transplant. 17, 1071–1080 (2017).

  • 18.

    Watson, C. J. E. et al. Observations on the ex situ perfusion of livers for transplantation. Am. J. Transplant. 18, 2005–2020 (2018).

  • 19.

    Nasralla, D. et al. A randomized trial of normothermic preservation in liver transplantation. Nature 557, 50–56 (2018).

  • 20.

    Hoyer, D. P. et al. Controlled oxygenated rewarming of cold stored livers prior to transplantation: first clinical application of a new concept. Transplantation 100, 147–152 (2016).

  • 21.

    de Vries, Y. et al. Pretransplant sequential hypo- and normothermic machine perfusion of suboptimal livers donated after circulatory death using a hemoglobin-based oxygen carrier perfusion solution. Am. J. Transplant. 19, 1202–1211 (2019).

  • 22.

    Bruinsma, B. G. et al. Subnormothermic machine perfusion for ex vivo preservation and recovery of the human liver for transplantation: subnormothermic machine perfusion of human livers. Am. J. Transpl. 14, 1400–1409 (2014).

  • 23.

    Bruinsma, B. G. et al. Metabolic profiling during ex vivo machine perfusion of the human liver. Sci. Rep. 6, 22415 (2016).

  • 24.

    Sridharan, G. V. et al. Metabolomic modularity analysis (MMA) to quantify human liver perfusion dynamics. Metabolites 7, 58 (2017).

  • 25.

    Karangwa, S. A. et al. Machine perfusion of donor livers for transplantation: a proposal for standardized nomenclature and reporting guidelines. Am. J. Transplant. 16, 2932–2942 (2016).

  • 26.

    Baust, J. G., Gao, D. & Baust, J. M. Cryopreservation: an emerging paradigm change. Organogenesis 5, 90–96 (2009).

  • 27.

    Pegg, D. E. Principles of cryopreservation. Methods Mol. Biol. 368, 39–57 (2007).

  • 28.

    Finger, E. B. & Bischof, J. C. Cryopreservation by vitrification: a promising approach for transplant organ banking. Curr. Opin. Organ Transplant. 23, 353–360 (2018).

  • 29.

    Fahy, G. M., Wowk, B. & Wu, J. Cryopreservation of complex systems: the missing link in the regenerative medicine supply chain. Rejuvenation Res 9, 279–291 (2006).

  • 30.

    Manuchehrabadi, N. et al. Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Sci. Transl. Med. 9, eaah4586 (2017).

  • 31.

    Storey, K. B. & Storey, J. M. Molecular biology of freezing tolerance. Compr. Physiol. 3, 1283–1308 (2013).

  • 32.

    Dutheil, D., Underhaug Gjerde, A., Petit-Paris, I., Mauco, G. & Holmsen, H. Polyethylene glycols interact with membrane glycerophospholipids: is this part of their mechanism for hypothermic graft protection? J. Chem. Biol. 2, 39–49 (2009).

  • 33.

    de Vries, R. et al. Extending the human liver preservation time for transplantation by supercooling. Transplantation 102, S396 (2018).

  • 34.

    Vajdová, K., Graf, R. & Clavien, P.-A. ATP-supplies in the cold-preserved liver: a long-neglected factor of organ viability. Hepatology 36, 1543–1552 (2002).

  • 35.

    Higashi, H., Takenaka, K., Fukuzawa, K., Yoshida, Y. & Sugimachi, K. Restoration of ATP contents in the transplanted liver closely relates to graft viability in dogs. Eur. Surg. Res. 21, 76–82 (1989).

  • 36.

    Bruinsma, B. G. et al. Peritransplant energy changes and their correlation to outcome after human liver transplantation. Transplantation 101, 1637–1644 (2017).

  • 37.

    Lanir, A. et al. Hepatic transplantation survival: correlation with adenine nucleotide level in donor liver. Hepatology 8, 471–475 (1988).

  • 38.

    Kamiike, W. et al. Adenine nucleotide metabolism and its relation to organ viability in human liver transplantation. Transplantation 45, 138–143 (1988).

  • 39.

    op den Dries, S. et al. Ex vivo normothermic machine perfusion and viability testing of discarded human donor livers: normothermic perfusion of human livers. Am. J. Transpl. 13, 1327–1335 (2013).

  • 40.

    Sutton, M. E. et al. Criteria for viability assessment of discarded human donor livers during ex vivo normothermic machine perfusion. PloS ONE 9, e110642 (2014).

  • 41.

    Reiling, J. et al. Urea production during normothermic machine perfusion: price of success? Liver Transpl. 21, 700–703 (2015).

  • Source Link

    Related Articles

    Leave a Comment

    This website uses cookies to improve your experience. We will assume you are ok with this, but you can opt-out if you wish. Accept Read More

    %d bloggers like this: