Home Hepatitis SAMD4 family members suppress human hepatitis B virus by directly binding to the Smaug recognition region of viral RNA

SAMD4 family members suppress human hepatitis B virus by directly binding to the Smaug recognition region of viral RNA

Credits to the Source Link Daniel
SAMD4 family members suppress human hepatitis B virus by directly binding to the Smaug recognition region of viral RNA
  • 1.

    Perz, J. F., Armstrong, G. L., Farrington, L. A., Hutin, Y. J. F. & Bell, B. P. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J. Hepatol. 45, 529–538 (2006).

  • 2.

    Yan, H. et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife 1, e00049 (2012).

  • 3.

    Li, H. et al. HBV life cycle is restricted in mouse hepatocytes expressing human NTCP. Cell Mol. Immunol. 11, 175–183 (2014).

  • 4.

    Tuttleman, J. S., Pourcel, C. & Summers, J. Formation of the pool of covalently closed circular viral-DNA in hepadnavirus-infected cells. Cell 47, 451–460 (1986).

  • 5.

    Tong, S. P. & Revill, P. Overview of hepatitis B viral replication and genetic variability. J. Hepatol. 64, S4–S16 (2016).

  • 6.

    Newbold, J. E. et al. The covalently closed duplex form of the hepadnavirus genome exists in-situ as a heterogeneous population of viral minichromosomes. J. Virol. 69, 3350–3357 (1995).

  • 7.

    Ghany, M. & Liang, T. J. Drug targets and molecular mechanisms of drug resistance in chronic hepatitis B. Gastroenterology 132, 1574–1585 (2007).

  • 8.

    Perrillo, R. Benefits and risks of interferon therapy for hepatitis B. Hepatology 49, S103–S111 (2009).

  • 9.

    Wieland, S. F., Asabe, S., Engle, R. E., Purcell, R. H. & Chisari, F. V. Limited hepatitis B virus replication space in the chronically hepatitis C virus-infected liver. J. Virol. 88, 5184–5188 (2014).

  • 10.

    Tan, G. Y., Song, H. X., Xu, F. C. & Cheng, G. H. When hepatitis B virus meets interferons. Front. Microbiol. 9, 1611 (2018).

  • 11.

    Smibert, C. A., Wilson, J. E., Kerr, K. & Macdonald, P. M. Smaug protein represses translation of unlocalized nanos mRNA in the Drosophila embryo. Gene Dev. 10, 2600–2609 (1996).

  • 12.

    Aviv, T., Lin, Z., Ben-Ari, G., Smibert, C. A. & Sicheri, F. Sequence-specific recognition of RNA hairpins by the SAM domain of Vts1p. Nat. Struct. Mol. Biol. 13, 168–176 (2006).

  • 13.

    Baez, M. V. & Boccaccio, G. L. Mammalian smaug is a translational repressor that forms cytoplasmic foci similar to stress granules. J. Biol. Chem. 280, 43131–43140 (2005).

  • 14.

    Baez, M. V. et al. Smaug1 mRNA-silencing foci respond to NMDA and modulate synapse formation. J. Cell Biol. 195, 1141–1157 (2011).

  • 15.

    Fernandez-Alvarez, A. J., Pascual, M. L., Boccaccio, G. L. & Thomas, M. G. Smaug variants in neural and non-neuronal cells. Commun. Integr. Biol. 9, e1139252 (2016).

  • 16.

    de Haro, M. et al. Smaug/SAMD4A restores translational activity of CUGBP1 and suppresses CUG-induced myopathy. PLoS Genet. 9, e1003445 (2013).

  • 17.

    Chen, Z. et al. Mutation of mouse Samd4 causes leanness, myopathy, uncoupled mitochondrial respiration, and dysregulated mTORC1 signaling. Proc. Natl Acad. Sci. USA 111, 7367–7372 (2014).

  • 18.

    Niu, N. N. et al. RNA-binding protein SAMD4 regulates skeleton development through translational inhibition of Mig6 expression. Cell Discov. 3, 16050 (2017).

  • 19.

    Zhang, Y. L. et al. Robust in vitro assay for analyzing the neutralization activity of serum specimens against hepatitis B virus. Emerg. Microbes Infect. 8, 724–733 (2019).

  • 20.

    Gripon, P. et al. Infection of a human hepatoma cell line by hepatitis B virus. Proc. Natl Acad. Sci. USA 99, 15655–15660 (2002).

  • 21.

    Wu, Y. et al. Sleeping beauty transposon-based system for rapid generation of HBV-replicating stable cell lines. J. Virol. Methods 234, 96–100 (2016).

  • 22.

    Zhang, T. Y. et al. Prolonged suppression of HBV in mice by a novel antibody that targets a unique epitope on hepatitis B surface antigen. Gut 65, 658–671 (2016).

  • 23.

    Zhang, D. W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332–336 (2009).

  • 24.

    Ivashkiv, L. B. & Donlin, L. T. Regulation of type I interferon responses. Nat. Rev. Immunol. 14, 36–49 (2014).

  • 25.

    Schoggins, J. W. et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472, 481–U545 (2011).

  • 26.

    Takaoka, A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501–U514 (2007).

  • 27.

    Kuriakose, T. et al. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Sci. Immunol. 1, aag2045 (2016).

  • 28.

    Chen, Q. Y. et al. DNA-dependent activator of interferon-regulatory factors inhibits hepatitis B virus replication. World J. Gastroenterol. 18, 2850–2858 (2012).

  • 29.

    Wang, W. H., Studach, L. L. & Andrisani, O. M. Proteins ZNF198 and SUZ12 are down-regulated in hepatitis B virus (HBV) X protein-mediated hepatocyte transformation and in HBV replication. Hepatology 53, 1137–1147 (2011).

  • 30.

    Tavalai, N., Papior, P., Rechter, S. & Stamminger, T. Nuclear domain 10 components promyelocytic leukemia protein and hDaxx independently contribute to an intrinsic antiviral defense against human cytomegalovirus infection. J. Virol. 82, 126–137 (2008).

  • 31.

    Regad, T. & Chelbi-Alix, M. K. Role and fate of PML nuclear bodies in response to interferon and viral infections. Oncogene 20, 7274–7286 (2001).

  • 32.

    Mao, R. C. et al. Inhibition of hepatitis B virus replication by the host zinc finger antiviral protein. PLoS Pathog. 9, e1003494 (2013).

  • 33.

    Mao, R. C. et al. Indoleamine 2,3-dioxygenase mediates the antiviral effect of gamma interferon against hepatitis B virus in human hepatocyte-derived cells. J. Virol. 85, 1048–1057 (2011).

  • 34.

    Liu, Y. J. et al. Interferon-inducible ribonuclease ISG20 inhibits hepatitis B virus replication through directly binding to the epsilon stem-loop structure of viral RNA. PLoS Pathog. 13, e1006296 (2017).

  • 35.

    Li, J. H. et al. Inhibition of hepatitis B virus replication by MyD88 involves accelerated degradation of pregenomic RNA and nuclear retention of Pre-S/S RNAs. J. Virol. 84, 6387–6399 (2010).

  • 36.

    Wang, H. F., Kim, S. & Ryu, W. S. DDX3 DEAD-Box RNA helicase inhibits hepatitis B virus reverse transcription by incorporation into nucleocapsids. J. Virol. 83, 5815–5824 (2009).

  • 37.

    Nelson, M. R., Leidal, A. M. & Smibert, C. A. Drosophila Cup is an eIF4E-binding protein that functions in Smaug-mediated translational repression. EMBO J. 23, 150–159 (2004).

  • 38.

    Brodsky, L. I. et al. A novel unsupervised method to identify genes important in the anti-viral response: application to interferon/ribavirin in hepatitis C patients. PLoS ONE 2, e584 (2007).

  • 39.

    Aviv, T. et al. The RNA-binding SAM domain of Smaug defines a new family of post-transcriptional regulators. Nat. Struct. Biol. 10, 614–621 (2003).

  • 40.

    Nishimura, T. et al. The eIF4E-binding protein 4E-T is a component of the mRNA decay machinery that bridges the 5′ and 3′ termini of target mRNAs. Cell Rep. 11, 1425–1436 (2015).

  • 41.

    Semotok, J. L. et al. Smaug recruits the CCR4/POP2/NOT deadenylase complex to trigger maternal transcript localization in the early drosophila embryo. Curr. Biol. 15, 284–294 (2005).

  • 42.

    Zaessinger, S., Busseau, I. & Simonelig, M. Oskar allows nanos mRNA translation in Drosophila embryos by preventing its deadenylation by Smaug/CCR4. Development 133, 4573–4583 (2006).

  • 43.

    Huang, L. R., Wu, H. L., Chen, P. J. & Chen, D. S. An immunocompetent mouse model for the tolerance of human chronic hepatitis B virus infection. Proc. Natl Acad. Sci. USA 103, 17862–17867 (2006).

  • 44.

    Yang, P. L., Althage, A., Chung, J. & Chisari, F. V. Hydrodynamic injection of viral DNA: a mouse model of acute hepatitis B virus infection. Proc. Natl Acad. Sci. USA 99, 13825–13830 (2002).

  • 45.

    Zhou, W. et al. Predictive model for inflammation grades of chronic hepatitis B: large-scale analysis of clinical parameters and gene expressions. Liver Int. 37, 1632–1641 (2017).

  • 46.

    Hubel, P. et al. A protein-interaction network of interferon-stimulated genes extends the innate immune system landscape. Nat. Immunol. 20, 493–49 (2019).

  • 47.

    Pollack, J. R. & Ganem, D. An RNA stem-loop structure directs hepatitis-B virus genomic RNA encapsidation. J. Virol. 67, 3254–3263 (1993).

  • 48.

    Sato, S. et al. The RNA sensor RIG-I dually functions as an innate sensor and direct antiviral factor for hepatitis B virus. Immunity 42, 123–132 (2015).

  • Source Link

    Related Articles

    Leave a Comment

    This website uses cookies to improve your experience. We will assume you are ok with this, but you can opt-out if you wish. Accept Read More

    %d bloggers like this: