Home Liver Diseases PPARα agonist and metformin co-treatment ameliorates NASH in mice induced by a choline-deficient, amino acid-defined diet with 45% fat

PPARα agonist and metformin co-treatment ameliorates NASH in mice induced by a choline-deficient, amino acid-defined diet with 45% fat

Credits to the Source Link Daniel
PPARα agonist and metformin co-treatment ameliorates NASH in mice induced by a choline-deficient, amino acid-defined diet with 45% fat
  • 1.

    Ludwig, J., Viggiano, T. R., McGill, D. B. & Oh, B. J. Nonalcoholic steatohepatitis: Mayo clinic experience with a hitherto unnamed disease. Mayo Clin. Proc. 55, 434–438 (1980).

    CAS 

    Google Scholar
     

  • 2.

    Kahn, S. E., Hull, R. L. & Utzschneider, K. M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840–846 (2006).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 3.

    Tilg, H. & Moschen, A. R. Inflammatory mechanisms in the regulation of insulin resistance. Mol. Med. 14, 222–231 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Maachi, M. et al. Systemic low-grade inflammation is related to both circulating and adipose tissue TNFα, leptin and IL-6 levels in obese women. Int. J. Obes. Relat. Metab. Disord. 28, 993–997 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Targher, G. et al. Nonalcoholic fatty liver disease is independently associated with an increased incidence of cardiovascular events in type 2 diabetic patients. Diabetes Care 30, 2119–2121 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Targher, G. et al. Nonalcoholic fatty liver disease and risk of future cardiovascular events among type 2 diabetic patients. Diabetes 54, 3541–3546 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Pais, R. & Bourron, O. Fatty liver and renal function impairment: time for awareness?. J Hepatol. 68, 13–15 (2017).

    Article 

    Google Scholar
     

  • 8.

    Tilg, H. & Moschen, A. R. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52, 1836–1846 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Sumida, Y. & Yoneda, M. Current and future pharmacological therapies for NAFLD/NASH. J. Gastroenterol. 53, 362–376 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Ghonem, N. S., Assis, D. N. & Boyer, J. L. Fibrates and cholestasis. Hepatology 62, 635–643 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Montagner, A. et al. Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut 65, 1202–1214 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Pawlak, M., Lefebvre, P. & Staels, B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J. Hepatol. 62, 720–733 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Chan, S. M. et al. Activation of PPARα ameliorates hepatic insulin resistance and steatosis in high fructose-fed mice despite increased endoplasmic reticulum stress. Diabetes 62, 2095–2105 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Souza-Mello, V. Peroxisome proliferator-activated receptors as targets to treat non-alcoholic fatty liver disease. World J. Hepatol. 7, 1012–1019 (2015).

    Article 

    Google Scholar
     

  • 15.

    Choudhary, N. S., Kumar, N. & Duseja, A. Peroxisome proliferator-activated receptors and their agonists in nonalcoholic fatty liver disease. J. Clin. Exp. Hepatol. 9, 731–739 (2019).

    Article 

    Google Scholar
     

  • 16.

    Ferretti, A. C. et al. Metformin and glucose starvation decrease the migratory ability of hepatocellular carcinoma cells: targeting AMPK activation to control migration. Sci. Rep. 9, 2815 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • 17.

    Chaube, B. & Bhat, M. K. AMPK, a key regulator of metabolic/energy homeostasis and mitochondrial biogenesis in cancer cells. Cell Death Dis. 7, e2044 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Vial, G., Detaille, D. & Guigas, B. Role of mitochondria in the mechanism(s) of action of metformin. Front Endocrinol (Lausanne). 10, 294 (2019).

  • 19.

    Day, E. A., Ford, R. J. & Steinberg, G. R. AMPK as a therapeutic target for treating metabolic diseases. Trends Endocrinol. Metab. 28, 545–560 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Foretz, M., Guigas, B., Bertrand, L., Pollak, M. & Viollet, B. Metformin: from mechanisms of action to therapies. Cell Metab. 20, 953–966 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Sag, D., Carling, D., Stout, R. D. & Suttles, J. Adenosine 5’-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J. Immunol. 181, 8633–8641 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Yang, L. et al. Effect of AMPK signal pathway on pathogenesis of abdominal aortic aneurysms. Oncotarget. 8, 92827–92840 (2017).

    Article 

    Google Scholar
     

  • 23.

    Zhao, P. et al. An AMPK-caspase-6 axis controls liver damage in nonalcoholic steatohepatitis. Science 367, 652–660 (2020).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 24.

    Kheirollahi, V. et al. Metformin induces lipogenic differentiation in myofibroblasts to reverse lung fibrosis. Nat. Commun. 10, 2987 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • 25.

    Shankaraiah, R. C. et al. Metformin prevents liver tumourigenesis by attenuating fibrosis in a transgenic mouse model of hepatocellular carcinoma. Oncogene 38, 7035–7045 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Anushiravani, A., Haddadi, N., Pourfarmanbar, M. & Mohammadkarimi, V. Treatment options for nonalcoholic fatty liver disease: a double-blinded randomized placebo-controlled trial. Eur. J. Gastroenterol. Hepatol. 31, 613–617 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Brackett, C. C. Clarifying metformin’s role and risks in liver dysfunction. J. Am. Pharm. Assoc. 2003(50), 407–410 (2010).

    Article 

    Google Scholar
     

  • 28.

    Göke, B., Gause-Nilsson, I. & Persson, A. The effects of tesaglitazar as add-on treatment to metformin in patients with poorly controlled type 2 diabetes. Diab. Vasc. Dis. Res. 4, 204–213 (2007).

    Article 

    Google Scholar
     

  • 29.

    Wei, G. et al. Comparison of murine steatohepatitis models identifies a dietary intervention with robust fibrosis, ductular reaction, and rapid progression to cirrhosis and cancer. Am. J. Physiol. Gastrointest. Liver Physiol. 318, G174–G188 (2020).

    Article 
    CAS 

    Google Scholar
     

  • 30.

    Fisher, F. M. et al. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes 59, 2781–2789 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Martin-Montalvo, A. et al. Metformin improves healthspan and lifespan in mice. Nat. Commun. 4, 2192 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • 32.

    Li, A. C. et al. Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARalpha, beta/delta, and gamma. J Clin Invest. 114, 1564–1576 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Brunt, E., Janney, C. & Bacon, B. Nonalcoholic Steatohepatitis: a proposal for grading and staging the histological lesions. Am. J. Gastroenterol. 94(9), 2467–2474 (1999).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Yamaguchi, K. et al. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 45, 1366–1374 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Perry, R. J., Samuel, V. T., Petersen, K. F. & Shulman, G. I. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 510, 84–91 (2014).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 36.

    Rutkowski, D. T. et al. UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators. Dev. Cell. 15, 829–840 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Hotamisligil, G. S. et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α- and obesity-induced insulin resistance. Science 271, 665–668 (1996).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 38.

    Moreno-Fernandez, M. E. et al. Peroxisomal β-oxidation regulates whole body metabolism, inflammatory vigor, and pathogenesis of nonalcoholic fatty liver disease. JCI Insight. 3, e93626 (2018).

    Article 

    Google Scholar
     

  • 39.

    Rakhshandehroo, M., Knoch, B., Müller, M. & Kersten, S. Peroxisome proliferator-activated receptor alpha target genes. PPAR Res. https://doi.org/10.1155/2010/612089 (2010).

    Article 
    PubMed Central 

    Google Scholar
     

  • 40.

    Inagaki, T. et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 5, 415–425 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 41.

    De Minicis, S. et al. HCC development is associated to peripheral insulin resistance in a mouse model of NASH. PLoS ONE 9, e97136 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • 42.

    Wang, Y. Y. et al. Activation of hepatic inflammatory pathways by catecholamines is associated with hepatic insulin resistance in male ischemic stroke rats. Endocrinology 155, 1235–1246 (2014).

    Article 
    CAS 

    Google Scholar
     

  • 43.

    Shibata, T., Takaguri, A., Ichihara, K. & Satoh, K. Inhibition of the TNF-α-induced serine phosphorylation of IRS-1 at 636/639 by AICAR. J. Pharmacol. Sci. 122, 93–102 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 44.

    Ueki, K., Kondo, T., Tseng, Y. H. & Kahn, C. R. Central role of suppressors of cytokine signaling proteins in hepatic steatosis, insulin resistance, and the metabolic syndrome in the mouse. Proc. Natl. Acad. Sci. 101, 10422–10427 (2004).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • 45.

    Vial, G. et al. Imeglimin normalizes glucose tolerance and insulin sensitivity and improves mitochondrial function in liver of a high-fat, high-sucrose diet mice model. Diabetes 64, 2254–2264 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 46.

    Knight, B. L. et al. A role for PPARalpha in the control of SREBP activity and lipid synthesis in the liver. Biochem. J. 389, 413–421 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 47.

    DeZwaan-McCabe, D. et al. The stress-regulated transcription factor CHOP promotes hepatic inflammatory gene expression, fibrosis, and oncogenesis. PLoS Genet. 9, e1003937 (2013).

    Article 
    CAS 

    Google Scholar
     

  • 48.

    Sanyal, A. J. et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 362, 1675–1685 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 49.

    Francque, S. et al. PPARα gene expression correlates with severity and histological treatment response in patients with non-alcoholic steatohepatitis. J. Hepatol. 63, 164–173 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 50.

    Dushay, J. et al. Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology 139, 456–463 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 51.

    Xu, X. et al. Preemptive Activation of the Integrated Stress Response Protects Mice From Diet-Induced Obesity and Insulin Resistance by Fibroblast Growth Factor 21 Induction. Hepatology 68, 2167–2181 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 52.

    Ratziu, V. et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-α and -δ, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology 150, 1147–1159 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Source Link

    Related Articles

    Leave a Comment

    This website uses cookies to improve your experience. We will assume you are ok with this, but you can opt-out if you wish. Accept Read More

    %d bloggers like this: