Home Liver DiseasesAlcoholic Liver Disease PCSK9 inhibition as a novel therapeutic target for alcoholic liver disease

PCSK9 inhibition as a novel therapeutic target for alcoholic liver disease

Credits to the Source Link Daniel
PCSK9 inhibition as a novel therapeutic target for alcoholic liver disease
  • 1.

    Gao, B. & Bataller, R. Alcoholic Liver Disease: Pathogenesis and New Therapeutic Targets. Gastroenterology 141, 1572–1585, https://doi.org/10.1053/j.gastro.2011.09.002 (2011).

  • 2.

    Li, T.-K. Quantifying the risk for alcohol-use and alcohol-attributable health disorders: Present findings and future research needs. Journal of Gastroenterology and Hepatology 23, S2–S8, https://doi.org/10.1111/j.1440-1746.2007.05298.x (2008).

  • 3.

    Rehm, J., Samokhvalov, A. V. & Shield, K. D. Global burden of alcoholic liver diseases. J Hepatol 59, 160–168, https://doi.org/10.1016/j.jhep.2013.03.007 (2013).

  • 4.

    The NHS Information Centre, L. S. Statistics on Alcohol: England, 2009 (2009).

  • 5.

    Seitz, H. K. et al. Alcoholic liver disease. Nat Rev Dis Primers 4, 16, https://doi.org/10.1038/s41572-018-0014-7 (2018).

  • 6.

    Anstee, Q. M., Daly, A. K. & Day, C. P. Genetics of Alcoholic Liver Disease. Seminars in liver disease 35, 361–374, https://doi.org/10.1055/s-0035-1567832 (2015).

  • 7.

    Villanueva, A. et al. DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma. Hepatology 61, 1945–1956, https://doi.org/10.1002/hep.27732 (2015).

  • 8.

    Lee, W. M. et al. Intravenous N-Acetylcysteine Improves Transplant-Free Survival in Early Stage Non-Acetaminophen Acute Liver Failure. Gastroenterology 137, 856–864.e851, https://doi.org/10.1053/j.gastro.2009.06.006 (2009).

  • 9.

    Parker, R., Armstrong, M. J., Corbett, C., Rowe, I. A. & Houlihan, D. D. Systematic review: pentoxifylline for the treatment of severe alcoholic hepatitis. Alimentary Pharmacology & Therapeutics 37, 845–854, https://doi.org/10.1111/apt.12279 (2013).

  • 10.

    Lucey, M. R. Liver transplantation for alcoholic liver disease. Nature Reviews Gastroenterology &Amp; Hepatology 11, 300, https://doi.org/10.1038/nrgastro.2013.247 (2014).

  • 11.

    Forrest, E. H. et al. The Glasgow alcoholic hepatitis score identifies patients who may benefit from corticosteroids. Gut 56, 1743–1746, https://doi.org/10.1136/gut.2006.099226 (2007).

  • 12.

    Singal, A. K. & Shah, V. H. Current trials and novel therapeutic targets for alcoholic hepatitis. J Hepatol 70, 305–313, https://doi.org/10.1016/j.jhep.2018.10.026 (2019).

  • 13.

    Mitchell, M. C., Friedman, L. S. & McClain, C. J. Medical Management of Severe Alcoholic Hepatitis: Expert Review from the Clinical Practice Updates Committee of the AGA Institute. Clin Gastroenterol Hepatol 15, 5–12, https://doi.org/10.1016/j.cgh.2016.08.047 (2017).

  • 14.

    Bataller, R., Arteel, G. E., Moreno, C. & Shah, V. Alcohol-related liver disease: Time for action. J Hepatol 70, 221–222, https://doi.org/10.1016/j.jhep.2018.12.007 (2019).

  • 15.

    Lohoff, F. W. et al. Methylomic profiling and replication implicates deregulation of PCSK9 in alcohol use disorder. Molecular psychiatry 23, 1–11, https://doi.org/10.1038/mp.2017.168 (2018).

  • 16.

    Cariou, B., Si-Tayeb, K. & Le May, C. Role of PCSK9 beyond liver involvement. Current opinion in lipidology 26, 155–161, https://doi.org/10.1097/MOL.0000000000000180 (2015).

  • 17.

    Zaid, A. et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9): hepatocyte-specific low-density lipoprotein receptor degradation and critical role in mouse liver regeneration. Hepatology 48, 646–654, https://doi.org/10.1002/hep.22354 (2008).

  • 18.

    Lambert, G., Sjouke, B., Choque, B., Kastelein, J. J. & Hovingh, G. K. The PCSK9 decade. J Lipid Res 53, 2515–2524, https://doi.org/10.1194/jlr.R026658 (2012).

  • 19.

    Ferri, N. & Ruscica, M. Proprotein convertase subtilisin/kexin type 9 (PCSK9) and metabolic syndrome: insights on insulin resistance, inflammation, and atherogenic dyslipidemia. Endocrine 54, 588–601, https://doi.org/10.1007/s12020-016-0939-0 (2016).

  • 20.

    Poirier, S. et al. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J Biol Chem 283, 2363–2372, https://doi.org/10.1074/jbc.M708098200 (2008).

  • 21.

    Schulz, R. & Schluter, K. D. PCSK9 targets important for lipid metabolism. Clin Res Cardiol Suppl 12, 2–11, https://doi.org/10.1007/s11789-017-0085-0 (2017).

  • 22.

    Abifadel, M., Varret, M., Rabès, J. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34, 154–156, https://doi.org/10.1038/ng1161 (2003).

  • 23.

    Cohen, J. et al. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet 37, 161–165, https://doi.org/10.1038/ng1509 (2005).

  • 24.

    Cohen, J. C., Boerwinkle, E., Mosley, T. H. Jr. & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354, 1264–1272, https://doi.org/10.1056/NEJMoa054013 (2006).

  • 25.

    PRALUENT (alirocumab) [package insert], Sanofi-Aventis U.S., Bridgewater, NJ. (2015).

  • 26.

    REPATHA (evolocumab) [package insert], Amgen Inc, Thousand oaks, CA. (2017).

  • 27.

    Farnier, M. et al. Efficacy of alirocumab in high cardiovascular risk populations with or without heterozygous familial hypercholesterolemia: Pooled analysis of eight ODYSSEY Phase 3 clinical program trials. International Journal of Cardiology 223, 750–757, https://doi.org/10.1016/j.ijcard.2016.08.273 (2016).

  • 28.

    Robinson, J. G. et al. Efficacy and Safety of Alirocumab in Reducing Lipids and Cardiovascular Events. New England Journal of Medicine 372, 1489–1499, https://doi.org/10.1056/NEJMoa1501031 (2015).

  • 29.

    Sabatine, M. S. et al. Efficacy and Safety of Evolocumab in Reducing Lipids and Cardiovascular Events. New England Journal of Medicine 372, 1500–1509, https://doi.org/10.1056/NEJMoa1500858 (2015).

  • 30.

    Mukhopadhyay, P. et al. PARP inhibition protects against alcoholic and non-alcoholic steatohepatitis. Journal of hepatology 66, 589–600, https://doi.org/10.1016/j.jhep.2016.10.023 (2017).

  • 31.

    Wang, Y. et al. Cannabidiol attenuates alcohol-induced liver steatosis, metabolic dysregulation, inflammation and neutrophil-mediated injury. Scientific reports 7, 12064, https://doi.org/10.1038/s41598-017-10924-8 (2017).

  • 32.

    FDAUS. Praluent® (alirocumab) summary review. Application number 125559Orig1s000. (July 24, 2015.).

  • 33.

    Gilpin, N. W. et al. Operant behavior and alcohol levels in blood and brain of alcohol-dependent rats. Alcohol Clin Exp Res 33, 2113–2123, https://doi.org/10.1111/j.1530-0277.2009.01051.x (2009).

  • 34.

    Wang, Z., Yao, T. & Song, Z. Chronic alcohol consumption disrupted cholesterol homeostasis in rats: down-regulation of low-density lipoprotein receptor and enhancement of cholesterol biosynthesis pathway in the liver. Alcoholism, clinical and experimental research 34, 471–478, https://doi.org/10.1111/j.1530-0277.2009.01111.x (2010).

  • 35.

    Costet, P. et al. Hepatic PCSK9 expression is regulated by nutritional status via insulin and sterol regulatory element-binding protein 1c. J Biol Chem 281, 6211–6218, https://doi.org/10.1074/jbc.M508582200 (2006).

  • 36.

    Lai, Q. et al. E2F1 inhibits circulating cholesterol clearance by regulating Pcsk9 expression in the liver. JCI Insight 2, https://doi.org/10.1172/jci.insight.89729 (2017).

  • 37.

    Brouwers, M. C. et al. Circulating PCSK9 is a strong determinant of plasma triacylglycerols and total cholesterol in homozygous carriers of apolipoprotein epsilon2. Clinical science (London, England: 1979) 126, 679–684, https://doi.org/10.1042/cs20130556 (2014).

  • 38.

    Cariou, B. et al. Plasma PCSK9 concentrations during an oral fat load and after short term high-fat, high-fat high-protein and high-fructose diets. Nutrition & metabolism 10, 4, https://doi.org/10.1186/1743-7075-10-4 (2013).

  • 39.

    Chan, D. C., Wong, A. T., Pang, J., Barrett, P. H. & Watts, G. F. Inter-relationships between proprotein convertase subtilisin/kexin type 9, apolipoprotein C-III and plasma apolipoprotein B-48 transport in obese subjects: a stable isotope study in the postprandial state. Clinical science (London, England: 1979) 128, 379–385, https://doi.org/10.1042/cs20140559 (2015).

  • 40.

    Kwakernaak, A. J., Lambert, G. & Dullaart, R. P. Plasma proprotein convertase subtilisin-kexin type 9 is predominantly related to intermediate density lipoproteins. Clinical biochemistry 47, 679–682, https://doi.org/10.1016/j.clinbiochem.2014.03.008 (2014).

  • 41.

    Lakoski, S. G., Lagace, T. A., Cohen, J. C., Horton, J. D. & Hobbs, H. H. Genetic and metabolic determinants of plasma PCSK9 levels. The Journal of clinical endocrinology and metabolism 94, 2537–2543, https://doi.org/10.1210/jc.2009-0141 (2009).

  • 42.

    Celli, R. & Zhang, X. Pathology of Alcoholic Liver Disease. In J Clin Transl Hepatol 2, 103–109 https://doi.org/10.14218/JCTH.2014.00010 (2014).

  • 43.

    Takahashi, Y. & Fukusato, T. Histopathology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol 20, 15539–15548, https://doi.org/10.3748/wjg.v20.i42.15539 (2014).

  • 44.

    Torruellas, C., French, S. W. & Medici, V. Diagnosis of alcoholic liver disease. World J Gastroenterol 20, 11684–11699, https://doi.org/10.3748/wjg.v20.i33.11684 (2014).

  • 45.

    Albano, E. Alcohol, oxidative stress and free radical damage. The Proceedings of the Nutrition Society 65, 278–290 (2006).

  • 46.

    Wu, D. & Cederbaum, A. I. Oxidative stress and alcoholic liver disease. Seminars in liver disease 29, 141–154, https://doi.org/10.1055/s-0029-1214370 (2009).

  • 47.

    Zhang, Y. et al. Relation of circulating PCSK9 concentration to fibrinogen in patients with stable coronary artery disease. Journal of clinical lipidology 8, 494–500, https://doi.org/10.1016/j.jacl.2014.07.001 (2014).

  • 48.

    Li, S. et al. Association of plasma PCSK9 levels with white blood cell count and its subsets in patients with stable coronary artery disease. Atherosclerosis 234, 441–445, https://doi.org/10.1016/j.atherosclerosis.2014.04.001 (2014).

  • 49.

    Ding, Z. et al. Cross-talk between LOX-1 and PCSK9 in vascular tissues. Cardiovascular research 107, 556–567, https://doi.org/10.1093/cvr/cvv178 (2015).

  • 50.

    Klebanoff, S. J. Myeloperoxidase: friend and foe. Journal of leukocyte biology 77, 598–625, https://doi.org/10.1189/jlb.1204697 (2005).

  • 51.

    Ricci, C. et al. PCSK9 induces a pro-inflammatory response in macrophages. Scientific reports 8, 2267, https://doi.org/10.1038/s41598-018-20425-x (2018).

  • 52.

    Joseph, L. & Robinson, J. G. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibition and the Future of Lipid Lowering Therapy. Progress in cardiovascular diseases 58, 19–31, https://doi.org/10.1016/j.pcad.2015.04.004 (2015).

  • 53.

    Filippatos, T. D., Christopoulou, E. C. & Elisaf, M. S. Pleiotropic effects of proprotein convertase subtilisin/kexin type 9 inhibitors? Curr Opin Lipidol 29, 333–339, https://doi.org/10.1097/mol.0000000000000523 (2018).

  • 54.

    Bittner, V. Pleiotropic Effects of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) Inhibitors? Circulation 134, 1695–1696, https://doi.org/10.1161/circulationaha.116.023687 (2016).

  • 55.

    Seidah, N. G., Chretien, M. & Mbikay, M. The ever-expanding saga of the proprotein convertases and their roles in body homeostasis: emphasis on novel proprotein convertase subtilisin kexin number 9 functions and regulation. Curr Opin Lipidol 29, 144–150, https://doi.org/10.1097/mol.0000000000000484 (2018).

  • 56.

    Dwivedi, D. J. et al. Differential Expression of PCSK9 Modulates Infection, Inflammation, and Coagulation in a Murine Model of Sepsis. Shock 46, 672–680, https://doi.org/10.1097/shk.0000000000000682 (2016).

  • 57.

    Ruscica, M. et al. Liver fat accumulation is associated with circulating PCSK9. Ann Med 48, 384–391, https://doi.org/10.1080/07853890.2016.1188328 (2016).

  • 58.

    Lebeau, P. F. et al. Diet-induced hepatic steatosis abrogates cell-surface LDLR by inducing de novo PCSK9 expression in mice. Journal of Biological Chemistry, 294, 9037-9047, https://doi.org/10.1074/jbc.RA119.008094 (2019).

  • 59.

    Wargny, M. et al. Circulating PCSK9 levels are not associated with the severity of hepatic steatosis and NASH in a high-risk population. Atherosclerosis 278, 82–90, https://doi.org/10.1016/j.atherosclerosis.2018.09.008 (2018).

  • 60.

    Lohoff, F. W. Lipid-Lowering Drug Effects Beyond the Cardiovascular System: Relevance for Neuropsychiatric Disorders. The international journal of neuropsychopharmacology/official scientific journal of the Collegium Internationale Neuropsychopharmacologicum 21, 1076–1078, https://doi.org/10.1093/ijnp/pyy087 (2018).

  • 61.

    Karagiannis, A. D. et al. Pleiotropic Anti-atherosclerotic Effects of PCSK9 InhibitorsFrom Molecular Biology to Clinical Translation. Curr Atheroscler Rep 20, 20, https://doi.org/10.1007/s11883-018-0718-x (2018).

  • 62.

    Lee, J. S. et al. PCSK9 Is Increased In Cerebrospinal Fluid Of Individuals With Alcohol Use Disorder. Alcoholism, clinical and experimental research, https://doi.org/10.1111/acer.14039 (2019).

  • 63.

    Rashid, S. et al. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc Natl Acad Sci USA 102, 5374–5379, https://doi.org/10.1073/pnas.0501652102 (2005).

  • 64.

    DeLeve, L. D. Liver sinusoidal endothelial cells and liver regeneration. J Clin Invest 123, 1861–1866, https://doi.org/10.1172/jci66025 (2013).

  • 65.

    Sozio, M. & Crabb, D. W. Alcohol and lipid metabolism. American Journal of Physiology-Endocrinology and Metabolism 295, E10–E16, https://doi.org/10.1152/ajpendo.00011.2008 (2008).

  • 66.

    Bertola, A., Mathews, S., Ki, S. H., Wang, H. & Gao, B. Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat Protoc 8, 627–637, https://doi.org/10.1038/nprot.2013.032 (2013).

  • 67.

    Mouton, A. et al. Alcohol vapor inhalation as a model of alcohol-induced organ disease. Alcohol Clin Exp Res 40, 1671–1678, https://doi.org/10.1111/acer.13133 (2016).

  • 68.

    Dong, B., Li, H., Singh, A. B., Cao, A. & Liu, J. Inhibition of PCSK9 transcription by berberine involves down-regulation of hepatic HNF1alpha protein expression through the ubiquitin-proteasome degradation pathway. J Biol Chem 290, 4047–4058, https://doi.org/10.1074/jbc.M114.597229 (2015).

  • 69.

    Shende, V. R. et al. Reduction of circulating PCSK9 and LDL-C levels by liver-specific knockdown of HNF1alpha in normolipidemic mice. J Lipid Res 56, 801–809, https://doi.org/10.1194/jlr.M052969 (2015).

  • 70.

    Lagace, T. A. PCSK9 and LDLR degradation: regulatory mechanisms in circulation and in cells. Current opinion in lipidology 25, 387–393, https://doi.org/10.1097/MOL.0000000000000114 (2014).

  • 71.

    Cariou, B. et al. PCSK9 Dominant Negative Mutant Results in Increased LDL Catabolic Rate and Familial Hypobetalipoproteinemia. Arteriosclerosis, Thrombosis, and Vascular Biology 29, 2191–2197, https://doi.org/10.1161/ATVBAHA.109.194191 (2009).

  • 72.

    Fasano, T. et al. A Novel Loss of Function Mutation of PCSK9 Gene in White Subjects With Low-Plasma Low-Density Lipoprotein Cholesterol. Arteriosclerosis, Thrombosis, and Vascular Biology 27, 677–681, https://doi.org/10.1161/01.ATV.0000255311.26383.2f (2007).

  • 73.

    Kotowski, I. K. et al. A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. Am J Hum Genet 78, 410–422, https://doi.org/10.1086/500615 (2006).

  • 74.

    Demers, A. et al. PCSK9 Induces CD36 Degradation and Affects Long-Chain Fatty Acid Uptake and Triglyceride Metabolism in Adipocytes and in Mouse Liver. Arteriosclerosis, Thrombosis, and Vascular Biology 35, 2517–2525, https://doi.org/10.1161/ATVBAHA.115.306032 (2015).

  • 75.

    Rashid, S. et al. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc Natl Acad Sci U S A 102, 5374-5379, https://doi.org/10.1073/pnas.0501652102 (2005).

  • 76.

    Ikeda, I. et al. Impact of fasting time on hepatic lipid metabolism in nutritional animal studies. Biosci Biotechnol Biochem 78, 1584–1591, https://doi.org/10.1080/09168451.2014.923297 (2014).

  • 77.

    Seneviratne, K. N., Kotuwegedara, R. T. & Ekanayake, S. Serum cholesterol and triglyceride levels of rats fed with consumer selected coconut oil blends. International Food Research Journal 18, 1303–1308 (2011).

  • 78.

    Nagy, L. E., Ding, W.-X., Cresci, G., Saikia, P. & Shah, V. H. Linking Pathogenic Mechanisms of Alcoholic Liver Disease With Clinical Phenotypes. Gastroenterology 150, 1756–1768, https://doi.org/10.1053/j.gastro.2016.02.035 (2016).

  • 79.

    Louvet, A. & Mathurin, P. Alcoholic liver disease: mechanisms of injury and targeted treatment. Nature Reviews Gastroenterology &Amp; Hepatology 12, 231, https://doi.org/10.1038/nrgastro.2015.35 (2015).

  • 80.

    Mathews, S., Xu, M., Wang, H., Bertola, A. & Gao, B. Animals Models of Gastrointestinal and Liver Diseases. Animal models of alcohol-induced liver disease: pathophysiology, translational relevance, and challenges. American Journal of Physiology-Gastrointestinal and Liver Physiology 306, G819–G823, https://doi.org/10.1152/ajpgi.00041.2014 (2014).

  • 81.

    Sabatine, M. S. et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N Engl J Med 376, 1713–1722, https://doi.org/10.1056/NEJMoa1615664 (2017).

  • Source Link

    Related Articles

    Leave a Comment

    This website uses cookies to improve your experience. We will assume you are ok with this, but you can opt-out if you wish. Accept Read More

    %d bloggers like this: