Home Liver Diseases Nonalcoholic steatohepatitis: the role of peroxisome proliferator-activated receptors

Nonalcoholic steatohepatitis: the role of peroxisome proliferator-activated receptors

Credits to the Source Link Daniel
Nonalcoholic steatohepatitis: the role of peroxisome proliferator-activated receptors
  • 1.

    Younossi, Z. M. et al. Global epidemiology of nonalcoholic fatty liver disease — Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 73–84 (2016).

    PubMed 

    Google Scholar
     

  • 2.

    European Association for the Study of the Liver, European Association for the Study of Diabetes & European Association for the Study of Obesity. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 64, 1388–1402 (2016).


    Google Scholar
     

  • 3.

    Chalasani, N. et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 67, 328–357 (2018).


    Google Scholar
     

  • 4.

    Angulo, P., Machado, M. V. & Diehl, A. M. Fibrosis in nonalcoholic fatty liver disease: mechanisms and clinical implications. Semin. Liver Dis. 35, 132–145 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Cholankeril, G. et al. Liver transplantation for nonalcoholic steatohepatitis in the US: temporal trends and outcomes. Dig. Dis. Sci. 62, 2915–2922 (2017).

    PubMed 

    Google Scholar
     

  • 6.

    Estes, C. et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J. Hepatol. 69, 896–904 (2018). An important modelling approach emphasizing the global trends in increasing prevalence of NAFLD and its related morbidity and mortality.

    PubMed 

    Google Scholar
     

  • 7.

    Byrne, C. D. & Targher, G. NAFLD: a multisystem disease. J. Hepatol. 62 (Suppl. 1), S47–S64 (2015). This review cites the evidence that NAFLD has consequences beyond the liver and specifically increases the risk of T2DM.

    PubMed 

    Google Scholar
     

  • 8.

    Francque, S. M., van der Graaff, D. & Kwanten, W. J. Non-alcoholic fatty liver disease and cardiovascular risk: Pathophysiological mechanisms and implications. J. Hepatol. 65, 425–443 (2016). This review summarizes the mechanisms that link NAFLD to CVD.

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Tilg, H., Moschen, A. R. & Roden, M. NAFLD and diabetes mellitus. Nat. Rev. Gastroenterol. Hepatol. 14, 32–42 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Lallukka, S. & Yki-Jarvinen, H. Non-alcoholic fatty liver disease and risk of type 2 diabetes. Best Pract. Res. Clin. Endocrinol. Metab. 30, 385–395 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Adams, L. A., Anstee, Q. M., Tilg, H. & Targher, G. Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases. Gut 66, 1138–1153 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Younossi, Z. M. et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: a systematic review and meta-analysis. J. Hepatol. 71, 793–801 (2019).

    PubMed 

    Google Scholar
     

  • 13.

    Targher, G. & Byrne, C. D. A perspective on metabolic syndrome and nonalcoholic fatty liver disease. Metab. Syndr. Relat. Disord. 13, 235–238 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Francque, S. et al. High prevalence of advanced fibrosis in association with the metabolic syndrome in a Belgian prospective cohort of NAFLD patients with elevated ALT. Results of the Belgian NAFLD registry. Acta Gastroenterol. Belg. 74, 9–16 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Gastaldelli, A. & Cusi, K. From NASH to diabetes and from diabetes to NASH: mechanisms and treatment options. JHEP Rep. 1, 312–328 (2019). This review describes the crucial role of dysfunctional adipose tissue in the close relationship between diabetes and NAFLD.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Yki-Järvinen, H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol. 2, 901–910 (2014).

    PubMed 

    Google Scholar
     

  • 17.

    Wainwright, P. & Byrne, C. D. Bidirectional relationships and disconnects between NAFLD and features of the metabolic syndrome. Int. J. Mol. Sci. 17, 367 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Mantovani, A., Byrne, C. D., Bonora, E. & Targher, G. Nonalcoholic fatty liver disease and risk of incident type 2 diabetes: a meta-analysis. Diabetes Care 41, 372–382 (2018).

    CAS 

    Google Scholar
     

  • 19.

    Targher, G., Byrne, C. D., Lonardo, A., Zoppini, G. & Barbui, C. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: a meta-analysis. J. Hepatol. 65, 589–600 (2016). This meta-analysis cites the evidence that NAFLD is an independent risk factor for incident cardiovascular events.

    PubMed 

    Google Scholar
     

  • 20.

    Sattar, N. et al. Age at diagnosis of type 2 diabetes mellitus and associations with cardiovascular and mortality risks. Circulation 139, 2228–2237 (2019).

    PubMed 

    Google Scholar
     

  • 21.

    Millett, E. R. C., Peters, S. A. E. & Woodward, M. Sex differences in risk factors for myocardial infarction: cohort study of UK Biobank participants. BMJ 363, k4247 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Stepanova, M., Rafiq, N. & Younossi, Z. M. Components of metabolic syndrome are independent predictors of mortality in patients with chronic liver disease: a population-based study. Gut 59, 1410–1415 (2010).

    PubMed 

    Google Scholar
     

  • 23.

    McPherson, S. et al. Evidence of NAFLD progression from steatosis to fibrosing-steatohepatitis using paired biopsies: implications for prognosis and clinical management. J. Hepatol. 62, 1148–1155 (2015).

    PubMed 

    Google Scholar
     

  • 24.

    Tada, T. et al. Type 2 diabetes mellitus: a risk factor for progression of liver fibrosis in middle-aged patients with non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 34, 2011–2018 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Yang, J. D. et al. Diabetes is associated with increased risk of hepatocellular carcinoma in patients with cirrhosis from nonalcoholic fatty liver disease. Hepatology 71, 907–916 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Angulo, P. et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 149, 389–397.e10 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Musso, G., Cassader, M., Paschetta, E. & Gambino, R. Thiazolidinediones and advanced liver fibrosis in nonalcoholic steatohepatitis: a meta-analysis. JAMA Intern. Med. 177, 633–640 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Sanyal, A. J. et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 362, 1675–1685 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Armstrong, M. J. et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 387, 679–690 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Francque, S. & Vonghia, L. Pharmacological treatment for non-alcoholic fatty liver disease. Adv. Ther. 36, 1052–1074 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Konerman, M. A., Jones, J. C. & Harrison, S. A. Pharmacotherapy for NASH: current and emerging. J. Hepatol. 68, 362–375 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Derosa, G., Sahebkar, A. & Maffioli, P. The role of various peroxisome proliferator-activated receptors and their ligands in clinical practice. J. Cell. Physiol. 233, 153–161 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Targher, G., Lonardo, A. & Byrne, C. D. Nonalcoholic fatty liver disease and chronic vascular complications of diabetes mellitus. Nat. Rev. Endocrinol. 14, 99–114 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Haas, J. T., Francque, S. & Staels, B. Pathophysiology and mechanisms of nonalcoholic fatty liver disease. Annu. Rev. Physiol. 78, 181–205 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Mann, J. P., Valenti, L., Scorletti, E., Byrne, C. D. & Nobili, V. Nonalcoholic fatty liver disease in children. Semin. Liver Dis. 38, 1–13 (2018).

    PubMed 

    Google Scholar
     

  • 36.

    Fleet, S. E., Lefkowitch, J. H. & Lavine, J. E. Current concepts in pediatric nonalcoholic fatty liver disease. Gastroenterol. Clin. North. Am. 46, 217–231 (2017).

    PubMed 

    Google Scholar
     

  • 37.

    Newton, K. P. et al. Prevalence of prediabetes and type 2 diabetes in children with nonalcoholic fatty liver disease. JAMA Pediatr. 170, e161971 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Eslam, M. et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 73, 202–209 (2020).

    PubMed 

    Google Scholar
     

  • 39.

    Rinella, M. E., Tacke, F., Sanyal, A. J., Anstee, Q. M. & Participants of the AASLD/EASL Workshop. Report on the AASLD/EASL Joint Workshop on Clinical Trial Endpoints in NAFLD. Hepatology 70, 1424–1436 (2019).

    PubMed 

    Google Scholar
     

  • 40.

    Samuel, V. T. & Shulman, G. I. Nonalcoholic fatty liver disease as a nexus of metabolic and hepatic diseases. Cell Metab. 27, 22–41 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Gancheva, S., Jelenik, T., Alvarez-Hernandez, E. & Roden, M. Interorgan metabolic crosstalk in human insulin resistance. Physiol. Rev. 98, 1371–1415 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Jacome-Sosa, M. M. & Parks, E. J. Fatty acid sources and their fluxes as they contribute to plasma triglyceride concentrations and fatty liver in humans. Curr. Opin. Lipidol. 25, 213–220 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Apostolopoulou, M. et al. Specific hepatic sphingolipids relate to insulin resistance, oxidative stress, and inflammation in nonalcoholic steatohepatitis. Diabetes Care 41, 1235–1243 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Bril, F. et al. Metabolic and histological implications of intrahepatic triglyceride content in nonalcoholic fatty liver disease. Hepatology 65, 1132–1144 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Dai, W. et al. Prevalence of nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus: a meta-analysis. Medicine 96, e8179 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Crewe, C., An, Y. A. & Scherer, P. E. The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. J. Clin. Invest. 127, 74–82 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Cusi, K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterology 142, 711–725.e6 (2012). Reviews the key role of adipose tissue and lipotoxicity in the development of muscle and liver insulin resistance and metabolic syndrome and the rationale for PPARγ insulin sensitizers in NASH.

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Diehl, A. M. & Day, C. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. N. Engl. J. Med. 377, 2063–2072 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Neuschwander-Tetri, B. A. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology 52, 774–788 (2010).

    PubMed 

    Google Scholar
     

  • 50.

    Bessone, F., Razori, M. V. & Roma, M. G. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol. Life Sci. 76, 99–128 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M. & Sanyal, A. J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 24, 908–922 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Tamura, S. & Shimomura, I. Contribution of adipose tissue and de novo lipogenesis to nonalcoholic fatty liver disease. J. Clin. Invest. 115, 1139–1142 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Roden, M. & Shulman, G. I. The integrative biology of type 2 diabetes. Nature 576, 51–60 (2019). This review summarizes the earliest events leading to insulin resistance, ectopic fat deposition and hyperglycaemia in humans and points to the decisive role of dysfunctional adipose tissue.

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Donnelly, K. L. et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115, 1343–1351 (2005). A classic work describing the contribution of adipose tissue to hepatic steatosis and liver insulin resistance in NAFLD.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Bril, F. & Cusi, K. Management of nonalcoholic fatty liver disease in patients with type 2 diabetes: a call to action. Diabetes Care 40, 419–430 (2017).

    PubMed 

    Google Scholar
     

  • 56.

    Liss, K. H. & Finck, B. N. PPARs and nonalcoholic fatty liver disease. Biochimie 136, 65–74 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Barb, D., Portillo-Sanchez, P. & Cusi, K. Pharmacological management of nonalcoholic fatty liver disease. Metabolism 65, 1183–1195 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Schuster, S., Cabrera, D., Arrese, M. & Feldstein, A. E. Triggering and resolution of inflammation in NASH. Nat. Rev. Gastroenterol. Hepatol. 15, 349–364 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Tacke, F. Targeting hepatic macrophages to treat liver diseases. J. Hepatol. 66, 1300–1312 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Jindal, A. et al. Fat-laden macrophages modulate lobular inflammation in nonalcoholic steatohepatitis (NASH). Exp. Mol. Pathol. 99, 155–162 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Zhou, Z. et al. Neutrophil-hepatic stellate cell interactions promote fibrosis in experimental steatohepatitis. Cell Mol. Gastroenterol. Hepatol. 5, 399–413 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Grunhut, J. et al. Macrophages in nonalcoholic steatohepatitis: friend or foe? Eur. Med. J. Hepatol. 6, 100–109 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Szabo, G. & Csak, T. Role of microRNAs in NAFLD/NASH. Dig. Dis. Sci. 61, 1314–1324 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 64.

    Szabo, G. & Csak, T. Inflammasomes in liver diseases. J. Hepatol. 57, 642–654 (2012). Reviews the role of inflammasome activation in chronic inflammation associated with fibrosis and cirrhosis in liver diseases.

    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    Ganz, M. et al. Progression of non-alcoholic steatosis to steatohepatitis and fibrosis parallels cumulative accumulation of danger signals that promote inflammation and liver tumors in a high fat-cholesterol-sugar diet model in mice. J. Transl. Med. 13, 193 (2015). Describes the development of a murine model consisting of a high fat–cholesterol–sugar diet that mimics liver pathology associated with NAFLD progression in humans and characterizes sterile and microbial danger signals associated with inflammation linked to NAFLD disease progression.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Chu, H., Williams, B. & Schnabl, B. Gut microbiota, fatty liver disease, and hepatocellular carcinoma. Liver Res. 2, 43–51 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Jayakumar, S. & Loomba, R. Review article: emerging role of the gut microbiome in the progression of nonalcoholic fatty liver disease and potential therapeutic implications. Aliment. Pharmacol. Ther. 50, 144–158 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Marra, F. & Svegliati-Baroni, G. Lipotoxicity and the gut-liver axis in NASH pathogenesis. J. Hepatol. 68, 280–295 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Krenkel, O. & Tacke, F. Liver macrophages in tissue homeostasis and disease. Nat. Rev. Immunol. 17, 306–321 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Krenkel, O. et al. Myeloid cells in liver and bone marrow acquire a functionally distinct inflammatory phenotype during obesity-related steatohepatitis. Gut 69, 551–563 (2020). This single-cell RNA sequencing analysis of NASH mouse models revealed a striking heterogeneity of myeloid cells and a unique inflammatory polarization of macrophages in NAFLD.

    CAS 
    PubMed 

    Google Scholar
     

  • 72.

    Kazankov, K. et al. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat. Rev. Gastroenterol. Hepatol. 16, 145–159 (2019). Reviews the role of inflammatory macrophages in disease severity of NASH and highlights studies of potential treatments for patients with NASH that target macrophage recruitment and polarization.

    CAS 
    PubMed 

    Google Scholar
     

  • 73.

    Lefere, S. et al. Differential effects of selective- and pan-PPAR agonists on experimental steatohepatitis and hepatic macrophages. J. Hepatol. 73, 757–770 (2020).

    PubMed 

    Google Scholar
     

  • 74.

    Dreyer, C. et al. Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68, 879–887 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • 75.

    Issemann, I. & Green, S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347, 645–650 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    Wanders, R. J. & Waterham, H. R. Biochemistry of mammalian peroxisomes revisited. Annu. Rev. Biochem. 75, 295–332 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 77.

    Michalik, L. et al. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol. Rev. 58, 726–741 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 78.

    Fajas, L. et al. The organization, promoter analysis, and expression of the human PPARγ gene. J. Biol. Chem. 272, 18779–18789 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 79.

    Tailleux, A., Wouters, K. & Staels, B. Roles of PPARs in NAFLD: potential therapeutic targets. Biochim. Biophys. Acta 1821, 809–818 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 80.

    Rakhshandehroo, M., Hooiveld, G., Muller, M. & Kersten, S. Comparative analysis of gene regulation by the transcription factor PPARα between mouse and human. PLoS ONE 4, e6796 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 81.

    de la Rosa Rodriguez, M. A. et al. The whole transcriptome effects of the PPARα agonist fenofibrate on livers of hepatocyte humanized mice. BMC Genomics 19, 443 (2018). This paper shows the differences between humans and mice in terms of PPARα activity and target genes.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 82.

    Roberts, R. A. et al. Apoptosis and proliferation in nongenotoxic carcinogenesis: species differences and role of PPARα. Toxicol. Lett. 112–113, 49–57 (2000).

    PubMed 

    Google Scholar
     

  • 83.

    Holden, P. R. & Tugwood, J. D. Peroxisome proliferator-activated receptor alpha: role in rodent liver cancer and species differences. J. Mol. Endocrinol. 22, 1–8 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 84.

    Kersten, S. & Stienstra, R. The role and regulation of the peroxisome proliferator activated receptor alpha in human liver. Biochimie 136, 75–84 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 85.

    Cheung, C. et al. Diminished hepatocellular proliferation in mice humanized for the nuclear receptor peroxisome proliferator-activated receptor alpha. Cancer Res. 64, 3849–3854 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 86.

    Bell, A. R. et al. Molecular basis of non-responsiveness to peroxisome proliferators: the guinea-pig PPARα is functional and mediates peroxisome proliferator-induced hypolipidaemia. Biochem. J. 332, 689–693 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 87.

    Lawrence, J. W. et al. Differential gene regulation in human versus rodent hepatocytes by peroxisome proliferator-activated receptor (PPAR) alpha. PPAR alpha fails to induce peroxisome proliferation-associated genes in human cells independently of the level of receptor expresson. J. Biol. Chem. 276, 31521–31527 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 88.

    Pap, A., Cuaranta-Monroy, I., Peloquin, M. & Nagy, L. Is the mouse a good model of human PPARgamma-related metabolic diseases? Int. J. Mol. Sci. 17, 1236 (2016).

    PubMed Central 

    Google Scholar
     

  • 89.

    Su, A. I. et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl Acad. Sci. USA 101, 6062–6067 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 90.

    Vidal-Puig, A. et al. Regulation of PPAR gamma gene expression by nutrition and obesity in rodents. J. Clin. Invest. 97, 2553–2561 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 91.

    Francque, S. et al. PPARα gene expression correlates with severity and histological treatment response in patients with non-alcoholic steatohepatitis. J. Hepatol. 63, 164–173 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 92.

    Kim, S. M. et al. Novel PPARα agonist MHY553 alleviates hepatic steatosis by increasing fatty acid oxidation and decreasing inflammation during aging. Oncotarget 8, 46273–46285 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 93.

    Chakravarthy, M. V. et al. Identification of a physiologically relevant endogenous ligand for PPARalpha in liver. Cell 138, 476–488 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 94.

    Reid, B. N. et al. Hepatic overexpression of hormone-sensitive lipase and adipose triglyceride lipase promotes fatty acid oxidation, stimulates direct release of free fatty acids, and ameliorates steatosis. J. Biol. Chem. 283, 13087–13099 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 95.

    Xu, H. E. et al. Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors. Proc. Natl Acad. Sci. USA 98, 13919–13924 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 96.

    Braissant, O., Foufelle, F., Scotto, C., Dauca, M. & Wahli, W. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 137, 354–366 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 97.

    Montagner, A. et al. Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut 65, 1202–1214 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 98.

    Lefebvre, P., Chinetti, G., Fruchart, J. C. & Staels, B. Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. J. Clin. Invest. 116, 571–580 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 99.

    Zardi, E. M. et al. Hepatic PPARs: their role in liver physiology, fibrosis and treatment. Curr. Med. Chem. 20, 3370–3396 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 100.

    Chen, L. et al. Oleoylethanolamide, an endogenous PPAR-alpha ligand, attenuates liver fibrosis targeting hepatic stellate cells. Oncotarget 6, 42530–42540 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 101.

    Wang, Z. et al. Taurine protected As2O3-induced the activation of hepatic stellate cells through inhibiting PPARα-autophagy pathway. Chem. Biol. Interact. 300, 123–130 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 102.

    Tardelli, M., Claudel, T., Bruschi, F. V., Moreno-Viedma, V. & Trauner, M. Adiponectin regulates AQP3 via PPARα in human hepatic stellate cells. Biochem. Biophys. Res. Commun. 490, 51–54 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 103.

    Bougarne, N. et al. Molecular actions of PPARα in lipid metabolism and inflammation. Endocr. Rev. 39, 760–802 (2018).

    PubMed 

    Google Scholar
     

  • 104.

    Pawlak, M. et al. The transrepressive activity of peroxisome proliferator-activated receptor alpha is necessary and sufficient to prevent liver fibrosis in mice. Hepatology 60, 1593–1606 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 105.

    Kersten, S. et al. Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J. Clin. Invest. 103, 1489–1498 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 106.

    Sanderson, L. M., Boekschoten, M. V., Desvergne, B., Muller, M. & Kersten, S. Transcriptional profiling reveals divergent roles of PPARalpha and PPARbeta/delta in regulation of gene expression in mouse liver. Physiol. Genomics 41, 42–52 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 107.

    Lemberger, T. et al. Expression of the peroxisome proliferator-activated receptor alpha gene is stimulated by stress and follows a diurnal rhythm. J. Biol. Chem. 271, 1764–1769 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 108.

    Canaple, L. et al. Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock. Mol. Endocrinol. 20, 1715–1727 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 109.

    Guan, D. et al. Diet-induced circadian enhancer remodeling synchronizes opposing hepatic lipid metabolic processes. Cell 174, 831–842.e12 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 110.

    Tognini, P. et al. Distinct circadian signatures in liver and gut clocks revealed by ketogenic diet. Cell Metab. 26, 523–538.e5 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 111.

    Gachon, F. et al. Proline- and acidic amino acid-rich basic leucine zipper proteins modulate peroxisome proliferator-activated receptor alpha (PPARalpha) activity. Proc. Natl Acad. Sci. USA 108, 4794–4799 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 112.

    Botta, M. et al. PPAR agonists and metabolic syndrome: an established role? Int. J. Mol. Sci. 19, 1197 (2018).

    PubMed Central 

    Google Scholar
     

  • 113.

    Pawlak, M., Lefebvre, P. & Staels, B. Molecular mechanism of PPARalpha action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J. Hepatol. 62, 720–733 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 114.

    Liu, S. et al. Role of peroxisome proliferator-activated receptor δ/β in hepatic metabolic regulation. J. Biol. Chem. 286, 1237–1247 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 115.

    Liu, S. et al. A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid use. Nature 502, 550–554 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 116.

    Iwaisako, K. et al. Protection from liver fibrosis by a peroxisome proliferator-activated receptor delta agonist. Proc. Natl Acad. Sci. USA 109, E1369–E1376 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 117.

    Dietz, M. et al. Comparative molecular profiling of the PPARα/γ activator aleglitazar: PPAR selectivity, activity and interaction with cofactors. ChemMedChem 7, 1101–1111 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 118.

    Ricote, M. & Glass, C. K. PPARs and molecular mechanisms of transrepression. Biochim. Biophys. Acta 1771, 926–935 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 119.

    Zizzo, G. & Cohen, P. L. The PPAR-γ antagonist GW9662 elicits differentiation of M2c-like cells and upregulation of the MerTK/Gas6 axis: a key role for PPAR-γ in human macrophage polarization. J. Inflamm. 12, 36 (2015).


    Google Scholar
     

  • 120.

    Wilding, J. P. PPAR agonists for the treatment of cardiovascular disease in patients with diabetes. Diabetes Obes. Metab. 14, 973–982 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 121.

    Han, L., Shen, W. J., Bittner, S., Kraemer, F. B. & Azhar, S. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part I: PPAR-α. Future Cardiol. 13, 259–278 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 122.

    Han, L., Shen, W. J., Bittner, S., Kraemer, F. B. & Azhar, S. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part II: PPAR-β/δ and PPAR-γ. Future Cardiol. 13, 279–296 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 123.

    Delerive, P. et al. Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-κB and AP-1. J. Biol. Chem. 274, 32048–32054 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 124.

    Hou, X. & Pei, F. Estradiol inhibits cytokine-induced expression of VCAM-1 and ICAM-1 in cultured human endothelial cells via AMPK/PPARα activation. Cell Biochem. Biophys. 72, 709–717 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 125.

    Hoekstra, M., Kruijt, J. K., Van Eck, M. & Van Berkel, T. J. Specific gene expression of ATP-binding cassette transporters and nuclear hormone receptors in rat liver parenchymal, endothelial, and Kupffer cells. J. Biol. Chem. 278, 25448–25453 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 126.

    Girroir, E. E. et al. Quantitative expression patterns of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) protein in mice. Biochem. Biophys. Res. Commun. 371, 456–461 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 127.

    Auboeuf, D. et al. Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-alpha in humans: no alteration in adipose tissue of obese and NIDDM patients. Diabetes 46, 1319–1327 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 128.

    Fan, Y. et al. Suppression of pro-inflammatory adhesion molecules by PPAR-delta in human vascular endothelial cells. Arterioscler. Thromb. Vasc. Biol. 28, 315–321 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 129.

    Kilgore, K. S. & Billin, A. N. PPARbeta/delta ligands as modulators of the inflammatory response. Curr. Opin. Investig. Drugs 9, 463–469 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 130.

    Liu, Y. et al. The role of PPAR-δ in metabolism, inflammation, and cancer: many characters of a critical transcription factor. Int. J. Mol. Sci. 19, 3339 (2018).

    PubMed Central 

    Google Scholar
     

  • 131.

    Odegaard, J. I. et al. Alternative M2 activation of Kupffer cells by PPARδ ameliorates obesity-induced insulin resistance. Cell Metab. 7, 496–507 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 132.

    Lanthier, N. et al. Kupffer cell activation is a causal factor for hepatic insulin resistance. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G107–G116 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 133.

    Dulai, P. S. et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: systematic review and meta-analysis. Hepatology 65, 1557–1565 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 134.

    Hagstrom, H. et al. Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD. J. Hepatol. 67, 1265–1273 (2017).

    PubMed 

    Google Scholar
     

  • 135.

    Weiskirchen, R., Weiskirchen, S. & Tacke, F. Organ and tissue fibrosis: molecular signals, cellular mechanisms and translational implications. Mol. Asp. Med. 65, 2–15 (2019).

    CAS 

    Google Scholar
     

  • 136.

    Lefere, S. & Tacke, F. Macrophages in obesity and non-alcoholic fatty liver disease: crosstalk with metabolism. JHEP Rep. 1, 30–43 (2019). This is an elegant review on the role of macrophages in NAFLD.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 137.

    Ritz, T., Krenkel, O. & Tacke, F. Dynamic plasticity of macrophage functions in diseased liver. Cell Immunol. 330, 175–182 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 138.

    Ham, S. A. et al. Ligand-activated PPARδ upregulates α-smooth muscle actin expression in human dermal fibroblasts: a potential role for PPARδ in wound healing. J. Dermatol. Sci. 80, 186–195 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 139.

    Park, J. R. et al. Effects of peroxisome proliferator-activated receptor-δ agonist on cardiac healing after myocardial infarction. PLoS ONE 11, e0148510 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 140.

    Lefebvre, P. et al. Interspecies NASH disease activity whole-genome profiling identifies a fibrogenic role of PPARα-regulated dermatopontin. JCI Insight 2, e92264 (2017).

    PubMed Central 

    Google Scholar
     

  • 141.

    Kato, A. et al. Identification of fibronectin binding sites in dermatopontin and their biological function. J. Dermatol. Sci. 76, 51–59 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 142.

    Soccio, R. E., Chen, E. R. & Lazar, M. A. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab. 20, 573–591 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 143.

    Ma, X., Wang, D., Zhao, W. & Xu, L. Deciphering the roles of PPARγ in adipocytes via dynamic change of transcription complex. Front. Endocrinol. 9, 473 (2018).


    Google Scholar
     

  • 144.

    Lumeng, C. & Saltiel, A. Inflammatory links between obesity and metabolic disease. J. Clin. Invest. 121, 2111–2117 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 145.

    Byrne, C. D. & Targher, G. Ectopic fat, insulin resistance, and nonalcoholic fatty liver disease: implications for cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 34, 1155–1161 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 146.

    Belfort, R. et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N. Engl. J. Med. 355, 2297–2307 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 147.

    Cusi, K. et al. Long-term pioglitazone treatment for patients with nonalcoholic steatohepatitis and prediabetes or type 2 diabetes mellitus: a randomized trial. Ann. Intern. Med. 165, 305–315 (2016). Long-term 3-year study confirming the efficacy of pioglitazone for the treatment of NASH in patients with prediabetes or T2DM.

    PubMed 

    Google Scholar
     

  • 148.

    Aithal, G. P. et al. Randomized, placebo-controlled trial of pioglitazone in nondiabetic subjects with nonalcoholic steatohepatitis. Gastroenterology 135, 1176–1184 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 149.

    Lomonaco, R. et al. Metabolic impact of nonalcoholic steatohepatitis in obese patients with type 2 diabetes. Diabetes Care 39, 632–638 (2016). A study that dissects the relative contribution of adipose tissue, hepatic and muscle insulin resistance in patients with and without diabetes and simple steatosis versus NASH.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 150.

    Larter, C. Z. et al. Peroxisome proliferator-activated receptor-alpha agonist, Wy 14,643, improves metabolic indices, steatosis and ballooning in diabetic mice with non-alcoholic steatohepatitis. J. Gastroenterol. Hepatol. 27, 341–350 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 151.

    Belfort, R., Berria, R., Cornell, J. & Cusi, K. Fenofibrate reduces systemic inflammation markers independent of its effects on lipid and glucose metabolism in patients with the metabolic syndrome. J. Clin. Endocrinol. Metab. 95, 829–836 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 152.

    Fabbrini, E. et al. Effect of fenofibrate and niacin on intrahepatic triglyceride content, very low-density lipoprotein kinetics, and insulin action in obese subjects with nonalcoholic fatty liver disease. J. Clin. Endocrinol. Metab. 95, 2727–2735 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 153.

    Palmer, C. N., Hsu, M. H., Griffin, K. J., Raucy, J. L. & Johnson, E. F. Peroxisome proliferator activated receptor-alpha expression in human liver. Mol. Pharmacol. 53, 14–22 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 154.

    Fruchart, J. C. et al. The selective peroxisome proliferator-activated receptor alpha modulator (SPPARMα) paradigm: conceptual framework and therapeutic potential: a consensus statement from the International Atherosclerosis Society (IAS) and the Residual Risk Reduction Initiative (R3i) Foundation. Cardiovasc. Diabetol. 18, 71 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 155.

    Basaranoglu, M., Acbay, O. & Sonsuz, A. A controlled trial of gemfibrozil in the treatment of patients with nonalcoholic steatohepatitis. J. Hepatol. 31, 384 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 156.

    Honda, Y. et al. Pemafibrate, a novel selective peroxisome proliferator-activated receptor alpha modulator, improves the pathogenesis in a rodent model of nonalcoholic steatohepatitis. Sci. Rep. 7, 42477 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 157.

    Araki, E. et al. Efficacy and safety of pemafibrate in people with type 2 diabetes and elevated triglyceride levels: 52-week data from the PROVIDE study. Diabetes Obes. Metab. 21, 1737–1744 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 158.

    Yokote, K. et al. Long-term efficacy and safety of pemafibrate, a novel selective peroxisome proliferator-activated receptor-alpha modulator (SPPARMα), in dyslipidemic patients with renal impairment. Int. J. Mol. Sci. 20, 706 (2019).

    CAS 
    PubMed Central 

    Google Scholar
     

  • 159.

    Maeda, N. et al. PPARγ ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 50, 2094–2099 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 160.

    Gastaldelli, A. et al. Pioglitazone in the treatment of NASH: the role of adiponectin. Aliment. Pharmacol. Ther. 32, 769–775 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 161.

    Ratziu, V. et al. Rosiglitazone for nonalcoholic steatohepatitis: one-year results of the randomized placebo-controlled Fatty Liver Improvement with Rosiglitazone Therapy (FLIRT) Trial. Gastroenterology 135, 100–110 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 162.

    Ratziu, V. et al. Long-term efficacy of rosiglitazone in nonalcoholic steatohepatitis: results of the fatty liver improvement by rosiglitazone therapy (FLIRT 2) extension trial. Hepatology 51, 445–453 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 163.

    Leclercq, I. A., Sempoux, C., Starkel, P. & Horsmans, Y. Limited therapeutic efficacy of pioglitazone on progression of hepatic fibrosis in rats. Gut 55, 1020–1029 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 164.

    Bril, F. et al. Role of oral vitamin E for the treatment of nonalcoholic steatohepatitis (NASH) in patients with type 2 diabetes: a randomized controlled trial. Diabetes Care 42, 1481–1488 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 165.

    Sakamoto, J. et al. Activation of human peroxisome proliferator-activated receptor (PPAR) subtypes by pioglitazone. Biochem. Biophys. Res. Commun. 278, 704–711 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 166.

    Kalavalapalli, S. et al. Pioglitazone improves hepatic mitochondrial function in a mouse model of nonalcoholic steatohepatitis. Am. J. Physiol. Endocrinol. Metab. 315, E163–E173 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 167.

    Ahmadian, M. et al. PPARγ signaling and metabolism: the good, the bad and the future. Nat. Med. 19, 557–566 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 168.

    Devchand, P. R., Liu, T., Altman, R. B., FitzGerald, G. A. & Schadt, E. E. The pioglitazone trek via human PPAR gamma: From discovery to a medicine at the FDA and beyond. Front. Pharmacol. 9, 1093 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 169.

    Jain, M. R. et al. Dual PPARα/γ agonist saroglitazar improves liver histopathology and biochemistry in experimental NASH models. Liver Int. 38, 1084–1094 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 170.

    Kaul, U. et al. New dual peroxisome proliferator activated receptor agonist-Saroglitazar in diabetic dyslipidemia and non-alcoholic fatty liver disease: integrated analysis of the real world evidence. Cardiovasc. Diabetol. 18, 80 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 171.

    Zydus. Zydus announces regulatory filing of Saroglitazar Magnesium for treatment of NASH with DCGI. Zydus Cadila https://zyduscadila.com/public/pdf/pressrelease/Zydus_announces_NDA_filing_of_Saroglitazar_Magnesium_with_DCGI_for_treatment_of_NASH.pdf (2019).

  • 172.

    Hong, F., Xu, P. & Zhai, Y. The opportunities and challenges of peroxisome proliferator-activated receptors ligands in clinical drug discovery and development. Int. J. Mol. Sci. 19, 2189 (2018).

    PubMed Central 

    Google Scholar
     

  • 173.

    US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03061721 (2019).

  • 174.

    Haczeyni, F. et al. The selective peroxisome proliferator-activated receptor-delta agonist seladelpar reverses nonalcoholic steatohepatitis pathology by abrogating lipotoxicity in diabetic obese mice. Hepatol. Commun. 1, 663–674 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 175.

    Bays HE, E. A. MBX-8025, a novel peroxisome proliferator receptor-delta agonist: lipid and other metabolic effects in dyslipidemic overweight patients treated with and without atorvastatin. J. Clin. Endocrinol. Metab. 96, 2889–2897 (2011).

    PubMed 

    Google Scholar
     

  • 176.

    US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03551522 (2019).

  • 177.

    CymaBay Therapeutics. CymaBay Therapeutics reports topline 12-week data from an ongoing phase 2b study of seladelpar in patients with nonalcoholic steatohepatitis. CymaBay https://ir.cymabay.com/press-releases?year=2019&page=2 (2019).

  • 178.

    CymaBay Therapeutics. CymaBay Therapeutics halts clinical development of seladelpar. CymaBay https://ir.cymabay.com/press-releases?year=2019&page=1 (2019).

  • 179.

    Staels, B. et al. Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology 58, 1941–1952 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 180.

    Ratziu, V. et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-α and -δ, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology 150, 1147–1159.e5 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 181.

    Cariou, B. et al. Dual peroxisome proliferator-activated receptor alpha/delta agonist GFT505 improves hepatic and peripheral insulin sensitivity in abdominally obese subjects. Diabetes Care 36, 2923–2930 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 182.

    US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT02704403 (2020).

  • 183.

    GENFIT. GENFIT: Announces results from interim analysis of RESOLVE-IT phase 3 trial of elafibranor in adults with NASH and fibrosis. GENFIT https://ir.genfit.com/news-releases/news-release-details/genfit-announces-results-interim-analysis-resolve-it-phase-3 (2020).

  • 184.

    McVicker, B. L. & Bennett, R. G. Novel anti-fibrotic therapies. Front. Pharmacol. 8, 318 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 185.

    Vallee, A., Vallee, J. N. & Lecarpentier, Y. Metabolic reprogramming in atherosclerosis: Opposed interplay between the canonical WNT/beta-catenin pathway and PPARgamma. J. Mol. Cell Cardiol. 133, 36–46 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 186.

    Zhao, N. et al. Enhanced MiR-711 transcription by PPARγ induces endoplasmic reticulum stress-mediated apoptosis targeting calnexin in rat cardiomyocytes after myocardial infarction. J. Mol. Cell Cardiol. 118, 36–45 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 187.

    Peymani, M., Ghaedi, K., Irani, S. & Nasr-Esfahani, M. H. Peroxisome proliferator-activated receptor gamma activity is required for appropriate cardiomyocyte differentiation. Cell J. 18, 221–228 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 188.

    Ortiz-Lopez, C. et al. Prevalence of prediabetes and diabetes and metabolic profile of patients with nonalcoholic fatty liver disease (NAFLD). Diabetes Care 35, 873–878 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 189.

    DeFronzo, R. A. et al. Pioglitazone for diabetes prevention in impaired glucose tolerance. N. Engl. J. Med. 364, 1104–1115 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 190.

    Inzucchi, S. E. et al. Pioglitazone prevents diabetes in patients with insulin resistance and cerebrovascular disease. Diabetes Care 39, 1684–1692 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 191.

    Kahn, S. E. et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N. Engl. J. Med. 355, 2427–2443 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 192.

    Chiquette, E., Ramirez, G. & Defronzo, R. A meta-analysis comparing the effect of thiazolidinediones on cardiovascular risk factors. Arch. Intern. Med. 164, 2097–2104 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 193.

    Goldberg, R. B. et al. A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care 28, 1547–1554 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 194.

    Mazzone, T. et al. Effect of pioglitazone compared with glimepiride on carotid intima-media thickness in type 2 diabetes: a randomized trial. JAMA 296, 2572–2581 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 195.

    Nissen, S. E. et al. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA 299, 1561–1573 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 196.

    Dormandy, J. A. et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366, 1279–1289 (2005). Paradigm-changing study on the ability of a diabetes medication and insulin-sensitizer (pioglitazone) to reduce stroke and myocardial infarction in patients with T2DM.

    CAS 
    PubMed 

    Google Scholar
     

  • 197.

    Lincoff, A. M., Wolski, K., Nicholls, S. J. & Nissen, S. E. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA 298, 1180–1188 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 198.

    Kernan, W. N. et al. Pioglitazone after ischemic stroke or transient ischemic attack. N. Engl. J. Med. 374, 1321–1331 (2016). Landmark study on the ability of pioglitazone to reduce risk of stroke or myocardial infarction compared with placebo in patients with insulin resistance but without diabetes with a recent history of ischaemic stroke or transient ischaemic attack.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 199.

    Spence, J. D. et al. Pioglitazone therapy in patients with stroke and prediabetes: a post hoc analysis of the IRIS randomized clinical trial. JAMA Neurol. 76, 526–535 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 200.

    Nissen, S. E. & Wolski, K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med. 356, 2457–2471 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 201.

    Hoogwerf, B. J. et al. Perspectives on some controversies in cardiovascular disease risk assessment in the pharmaceutical development of glucose-lowering medications. Diabetes Care 39, S219–S227 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 202.

    Home, P. D. et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet 373, 2125–2135 (2009). This study, which enrolled more than 4,000 patients, found that rosiglitazone does not increase the risk of overall cardiovascular morbidity or mortality compared with other glucose-lowering drugs.

    CAS 
    PubMed 

    Google Scholar
     

  • 203.

    US Food and Drug Administration. FDA Drug Safety Communication: FDA eliminates the Risk Evaluation and Mitigation Strategy (REMS) for rosiglitazone-containing diabetes medicines (FDA, 2015).

  • 204.

    Choi, Y. J. et al. Effects of the PPAR-delta agonist MBX-8025 on atherogenic dyslipidemia. Atherosclerosis 220, 470–476 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 205.

    Keech, A. et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366, 1849–1861 (2005). This large study found that fenofibrate statistically significantly reduces total cardiovascular events and primarily non-fatal myocardial infarctions.

    CAS 
    PubMed 

    Google Scholar
     

  • 206.

    Ginsberg, H. N. et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N. Engl. J. Med. 362, 1563–1574 (2010).

    PubMed 

    Google Scholar
     

  • 207.

    Jani, R. H. et al. A multicenter, prospective, randomized, double-blind study to evaluate the safety and efficacy of Saroglitazar 2 and 4 mg compared with placebo in type 2 diabetes mellitus patients having hypertriglyceridemia not controlled with atorvastatin therapy (PRESS VI). Diabetes Technol. Ther. 16, 63–71 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 208.

    Wettstein, G. et al. The new-generation pan-peroxisome proliferator-activated receptor agonist IVA337 protects the liver from metabolic disorders and fibrosis. Hepatol. Commun. 1, 524–537 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 209.

    Boubia, B. et al. Design, synthesis, and evaluation of a novel series of indole sulfonamide peroxisome proliferator activated receptor (PPAR) alpha/gamma/delta triple activators: discovery of lanifibranor, a new antifibrotic clinical candidate. J. Med. Chem. 61, 2246–2265 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 210.

    Ruzehaji, N. et al. Pan PPAR agonist IVA337 is effective in prevention and treatment of experimental skin fibrosis. Ann. Rheum. Dis. 75, 2175–2183 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 211.

    Avouac, J. et al. Pan-PPAR agonist IVA337 is effective in experimental lung fibrosis and pulmonary hypertension. Ann. Rheum. Dis. 76, 1931–1940 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 212.

    Stumvoll, M. & Haring, H. U. Glitazones: clinical effects and molecular mechanisms. Ann. Med. 34, 217–224 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 213.

    US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03008070 (2020).

  • 214.

    Inventiva. Inventiva’s lanifibranor meets the primary and key secondary endpoints in the Phase IIb NATIVE clinical trial in non-alcoholic steatohepatitis (NASH). Inventiva https://inventivapharma.com/inventivas-lanifibranor-meets-the-primary-and-key-secondary-endpoints-in-the-phase-iib-native-clinical-trial-in-non-alcoholic-steatohepatitis-nash/ (2020).

  • 215.

    Bonds, D. E. et al. Fenofibrate-associated changes in renal function and relationship to clinical outcomes among individuals with type 2 diabetes: the Action to Control Cardiovascular Risk in Diabetes (ACCORD) experience. Diabetologia 55, 1641–1650 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 216.

    Davis, T. M. et al. Effects of fenofibrate on renal function in patients with type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study. Diabetologia 54, 280–290 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 217.

    Lee, M., Saver, J. L., Liao, H. W., Lin, C. H. & Ovbiagele, B. Pioglitazone for secondary stroke prevention: a systematic review and meta-analysis. Stroke 48, 388–393 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 218.

    DeFronzo, R. A., Inzucchi, S., Abdul-Ghani, M. & Nissen, S. E. Pioglitazone: the forgotten, cost-effective cardioprotective drug for type 2 diabetes. Diab. Vasc. Dis. Res. 16, 133–143 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 219.

    Portillo-Sanchez, P. et al. Effect of pioglitazone on bone mineral density in patients with nonalcoholic steatohepatitis: a 36-month clinical trial. J. Diab. 11, 223–231 (2019).

    CAS 

    Google Scholar
     

  • 220.

    Filipova, E., Uzunova, K., Kalinov, K. & Vekov, T. Pioglitazone and the risk of bladder cancer: a meta-analysis. Diabetes Ther. 8, 705–726 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 221.

    Balas, B. et al. Pioglitazone treatment increases whole body fat but not total body water in patients with non-alcoholic steatohepatitis. J. Hepatol. 47, 565–570 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 222.

    Young, L. H. et al. Heart failure after ischemic stroke or transient ischemic attack in insulin-resistant patients without diabetes mellitus treated with pioglitazone. Circulation 138, 1210–1220 (2018). This secondary analysis of the IRIS trial found that pioglitazone did not increase the risk of heart failure.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 223.

    van der Meer, R. W. et al. Pioglitazone improves cardiac function and alters myocardial substrate metabolism without affecting cardiac triglyceride accumulation and high-energy phosphate metabolism in patients with well-controlled type 2 diabetes mellitus. Circulation 119, 2069–2077 (2009).

    PubMed 

    Google Scholar
     

  • 224.

    Clarke, G. D. et al. Pioglitazone improves left ventricular diastolic function in subjects with diabetes. Diabetes Care 40, 1530–1536 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 225.

    Lehrke, M. & Marx, N. Diabetes mellitus and heart failure. Am. J. Cardiol. 120, S37–S47 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 226.

    DeFronzo, R. A. et al. Revitalization of pioglitazone: the optimum agent to be combined with a sodium-glucose co-transporter-2 inhibitor. Diabetes Obes. Metab. 18, 454–462 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 227.

    Munigoti, S. P. & Harinarayan, C. V. Role of glitazars in atherogenic dyslipidemia and diabetes: two birds with one stone? Indian J. Endocrinol. Metab. 18, 283–287 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 228.

    Hirschfield, G. et al. LBP-002 — Treatment efficacy and safety of seladelpar, a selective peroxisome proliferator-activated receptor delta agonist, in primary biliary cholangitis patients: 12- and 26-week analysis from an ongoing international, randomized, dose raging phase 2 study. J. Hepatol. 68, S105–S106 (2018).


    Google Scholar
     

  • 229.

    World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications: report of a WHO consultation. Part 1: diagnosis and classification of diabetes mellitus (WHO, 1999).

  • 230.

    Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 285, 2486–2497 (2001).


    Google Scholar
     

  • 231.

    Alberti, K. G., Zimmet, P., Shaw, J. & IDF Epidemiology Task Force Consensus Group. The metabolic syndrome — a new worldwide definition. Lancet 366, 1059–1062 (2005).


    Google Scholar
     

  • 232.

    Alberti, K. G. et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and international association for the Study of Obesity. Circulation 120, 1640–1645 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 233.

    US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03350165 (2019).

  • 234.

    Bril, F. et al. Role of vitamin E for nonalcoholic steatohepatitis in patients with type 2 diabetes: a randomized controlled trial. Diabetes Care 42, 1481–1488 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 235.

    US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03459079 (2020).

  • 236.

    Sumida, Y. & Yoneda, M. Current and future pharmacological therapies for NAFLD/NASH. J. Gastroenterol. 53, 362–376 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Source Link

    Related Articles

    Leave a Comment

    This website uses cookies to improve your experience. We will assume you are ok with this, but you can opt-out if you wish. Accept Read More

    %d bloggers like this: