Home Liver Diseases Non-invasive monitoring of chronic liver disease via near-infrared and shortwave-infrared imaging of endogenous lipofuscin

Non-invasive monitoring of chronic liver disease via near-infrared and shortwave-infrared imaging of endogenous lipofuscin

Credits to the Source Link Daniel
Non-invasive monitoring of chronic liver disease via near-infrared and shortwave-infrared imaging of endogenous lipofuscin
  • 1.

    Younossi, Z. M. et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 73–84 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Younossi, Z. et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 15, 11–20 (2018).

    PubMed 

    Google Scholar
     

  • 3.

    Ward, Z. J. et al. Projected U.S. state-level prevalence of adult obesity and severe obesity. N. Engl. J. Med. 381, 2440–2450 (2019).

    PubMed 

    Google Scholar
     

  • 4.

    Satapathy, S. K. & Sanyal, A. J. Epidemiology and natural history of nonalcoholic fatty liver disease. Semin. Liver Dis. 35, 221–235 (2015).

    PubMed 

    Google Scholar
     

  • 5.

    Brunt, E. M. et al. Nonalcoholic fatty liver disease. Nat. Rev. Dis. Primers 1, 15080 (2015).

  • 6.

    Kleiner, D. E. On beyond staging and grading: liver biopsy evaluation in a posttreatment world. Hepatology 65, 1432–1434 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Rockey, D. C., Caldwell, S. H., Goodman, Z. D., Nelson, R. C. & Smith, A. D. Liver biopsy. Hepatology 49, 1017–1044 (2009).

    PubMed 

    Google Scholar
     

  • 8.

    Dietrich, C. F. et al. EFSUMB guidelines and recommendations on the clinical use of liver ultrasound elastography. Ultraschall Med. 38, e16–e47 (2017).

    PubMed 

    Google Scholar
     

  • 9.

    Masarone, M. et al. Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid. Med. Cell. Longev. 2018, 9547613 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Koyama, Y. & Brenner, D. A. Liver inflammation and fibrosis. J. Clin. Invest. 127, 55–64 (2017).

  • 11.

    Marcellin, P. & Kutala, B. K. Liver diseases: a major, neglected global public health problem requiring urgent actions and large-scale screening. Liver Int. 38(Suppl. 1), 2–6 (2018).

    PubMed 

    Google Scholar
     

  • 12.

    Vishwanath, K. & Ramanujam, N. in Encyclopedia of Analytical Chemistry (ed. Meyers, R.A.) 20–56 (John Wiley & Sons, 2011).

  • 13.

    Croce, A. C., Ferrigno, A., Bottiroli, G. & Vairetti, M. Autofluorescence-based optical biopsy: an effective diagnostic tool in hepatology. Liver Int. 38, 1160–1174 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Monici, M. Cell and tissue autofluorescence research and diagnostic applications. Biotechnol. Annu. Rev. 11, 227–256 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7, 626–634 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Ntziachristos, V., Ripoll, J. & Weissleder, R. Would near-infrared fluorescence signals propagate through large human organs for clinical studies? Opt. Lett. 27, 333–335 (2002).

    PubMed 

    Google Scholar
     

  • 17.

    Lim, Y. T. et al. Selection of quantum dot wavelengths for biomedical assays and imaging. Mol. Imaging 2, 50–64 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Carr, J. A. et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc. Natl Acad. Sci. USA 115, 4465–4470 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Bruns, O. T. et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng. 1, 0056 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Iwaisako, K. et al. Origin of myofibroblasts in the fibrotic liver in mice. Proc. Natl Acad. Sci. USA 111, E3297–E3305 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Delire, B., Stärkel, P. & Leclercq, I. Animal models for fibrotic liver diseases: what we have, what we need, and what is under development. J. Clin. Transl. Hepatol. 3, 53–66 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Scholten, D., Trebicka, J., Liedtke, C. & Weiskirchen, R. The carbon tetrachloride model in mice. Lab. Anim. 49, 4–11 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Geerts, A. M. et al. Comparison of three research models of portal hypertension in mice: macroscopic, histological and portal pressure evaluation. Int. J. Exp. Pathol. 89, 251–263 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Tag, C. et al. Induction of experimental obstructive cholestasis in mice. Lab. Anim. 49, 70–80 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Majno, G. & Joris, I. in Cells, Tissues, and Disease: Principles of General Pathology (eds Majno, G. & Joris, I.) 74–128 (Oxford University Press, 2004).

  • 26.

    Terman, A. & Brunk, U. T. Lipofuscin. Int. J. Biochem. Cell Biol. 36, 1400–1404 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Rantakari, P. et al. Stabilin-1 expression defines a subset of macrophages that mediate tissue homeostasis and prevent fibrosis in chronic liver injury. Proc. Natl Acad. Sci. USA 113, 9298–9303 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Barden, H. The intragranular location of carboxyl groups in neuromelanin and lipofuscin in human brain and in meningeal melanosomes in mouse brain. J. Histochem. Cytochem. 34, 1271–1279 (1986).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Lillie, R. D. A Nile blue staining technic for the differentiation of melanin and lipofuscins. Stain Technol. 31, 151–153 (1956).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Evangelou, K. & Gorgoulis, V. G. in Oncogene-Induced Senescence: Methods and Protocols, Methods in Molecular Biology Vol. 1534 (ed. Nikiforov, M.) 111–119 (Humana Press, 2017).

  • 31.

    Everson Pearse, A. G. in Histochemistry Theoretical and Applied Vol. 2, 898–928 (Churchill Livingstone, 1985).

  • 32.

    Terman, A., Kurz, T., Navratil, M., Arriaga, E. A. & Brunk, U. T. Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial–lysosomal axis theory of aging. Antioxid. Redox Signal. 12, 503–535 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Seehafer, S. S. & Pearce, D. A. You say lipofuscin, we say ceroid: defining autofluorescent storage material. Neurobiol. Aging 27, 576–588 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Schnell, S. A., Staines, W. A. & Wessendorf, M. W. Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J. Histochem. Cytochem. 47, 719–730 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Erben, T., Ossig, R., Naim, H. Y. & Schnekenburger, J. What to do with high autofluorescence background in pancreatic tissues—an efficient Sudan black B quenching method for specific immunofluorescence labelling. Histopathology 69, 406–422 (2016).

    PubMed 

    Google Scholar
     

  • 36.

    Nazeer, S. S., Saraswathy, A., Shenoy, S. J. & Jayasree, R. S. Fluorescence spectroscopy as an efficient tool for staging the degree of liver fibrosis: an in vivo comparison with MRI. Sci. Rep. 8, 10967 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Kisseleva, T. et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc. Natl Acad. Sci. USA 109, 9448–9453 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Duffield, J. S. et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 115, 56–65 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Liu, C. et al. Kupffer cells are associated with apoptosis, inflammation and fibrotic effects in hepatic fibrosis in rats. Lab. Invest. 90, 1805–1816 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Beljaars, L. et al. Hepatic localization of macrophage phenotypes during fibrogenesis and resolution of fibrosis in mice and humans. Front. Immunol. 5, 430 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Matsumoto, M. et al. An improved mouse model that rapidly develops fibrosis in non-alcoholic steatohepatitis. Int. J. Exp. Pathol. 94, 93–103 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Giannessi, F., Giambelluca, M. A., Scavuzzo, M. C. & Ruffoli, R. Ultrastructure of testicular macrophages in aging mice. J. Morphol. 263, 39–46 (2005).

    PubMed 

    Google Scholar
     

  • 43.

    Jara, M., Carballada, R. & Esponda, P. Age-induced apoptosis in the male genital tract of the mouse. Reproduction 127, 359–366 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Brunk, U. T. & Terman, A. Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic. Biol. Med. 33, 611–619 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Softic, S. et al. Lipodystrophy due to adipose tissue-specific insulin receptor knockout results in progressive NAFLD. Diabetes 65, 2187–2200 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M. & Sanyal, A. J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 24, 908–922 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Alonso, C. et al. Metabolomic identification of subtypes of nonalcoholic steatohepatitis. Gastroenterology 152, 1449–1461 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Brunt, E. M., Janney, C. G., Bisceglie, A. M. Di, Neuschwander-Tetri, B. A. & Bacon, B. R. Nonalcoholic steatohepatitis—a proposal for grading and staging the histological lesions. Am. J. Gastroenterol. 94, 2467–2474 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Orchard, G.E., in Bancroft’s Theory and Practice of Histological Techniques (eds Suvarna, S. K., Layton, C. et al.) 239–270 (Elsevier, 2013).

  • 50.

    Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative C
    T method. Nat. Protoc. 3, 1101–1108 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Casteilla, L., Pénicaud, L., Cousin, B. & Calise, D. Choosing an adipose tissue depot for sampling: factors in selection and depot specificity. Methods Mol. Biol. 456, 23–38 (2008).

    PubMed 

    Google Scholar
     

  • 52.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source Link

    Related Articles

    Leave a Comment

    This website uses cookies to improve your experience. We will assume you are ok with this, but you can opt-out if you wish. Accept Read More

    %d bloggers like this: