Home Liver Diseases Molecular and cellular mechanisms of liver fibrosis and its regression

Molecular and cellular mechanisms of liver fibrosis and its regression

Credits to the Source Link Daniel
Molecular and cellular mechanisms of liver fibrosis and its regression
  • 1.

    Friedman, S. L. Liver fibrosis – from bench to bedside. J. Hepatol. 38 (Suppl. 1), S38–S53 (2003).

    Article 

    Google Scholar
     

  • 2.

    Bataller, R. & Brenner, D. A. Liver fibrosis. J. Clin. Invest. 115, 209–218 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Lo, R. C. & Kim, H. Histopathological evaluation of liver fibrosis and cirrhosis regression. Clin. Mol. Hepatol. 23, 302–307 (2017).

    Article 

    Google Scholar
     

  • 4.

    Troeger, J. S. et al. Deactivation of hepatic stellate cells during liver fibrosis resolution in mice. Gastroenterology 143, 1073–1083.e22 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Kisseleva, T. et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc. Natl Acad. Sci. USA 109, 9448–9453 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Iredale, J. P. et al. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J. Clin. Invest. 102, 538–549 (1998).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Lu, M. et al. Serum biomarkers indicate long-term reduction in liver fibrosis in patients with sustained virological response to treatment for HCV infection. Clin. Gastroenterol. Hepatol. 14, 1044–1055.e3 (2016).

    Article 

    Google Scholar
     

  • 8.

    Kisseleva, T. & Brenner, D. A. Mechanisms of fibrogenesis. Exp. Biol. Med. 233, 109–122 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Schmitt-Graff, A., Kruger, S., Bochard, F., Gabbiani, G. & Denk, H. Modulation of alpha smooth muscle actin and desmin expression in perisinusoidal cells of normal and diseased human livers. Am. J. Pathol. 138, 1233–1242 (1991).

    CAS 

    Google Scholar
     

  • 10.

    Kisseleva, T. & Brenner, D. A. Hepatic stellate cells and the reversal of fibrosis. J. Gastroenterol. Hepatol. 21 (Suppl. 3), S84–S87 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Kalluri, R. & Neilson, E. G. Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 112, 1776–1784 (2003).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Gomperts, B. N. & Strieter, R. M. Fibrocytes in lung disease. J. Leukoc. Biol. 82, 449–456 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Fallowfield, J. A. et al. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J. Immunol. 178, 5288–5295 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Taura, K. et al. Hepatocytes do not undergo epithelial-mesenchymal transition in liver fibrosis in mice. Hepatology 51, 1027–1036 (2010).

    Article 

    Google Scholar
     

  • 15.

    Scholten, D. et al. Genetic labeling does not detect epithelial-to-mesenchymal transition of cholangiocytes in liver fibrosis in mice. Gastroenterology 139, 987–998 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Ueno, T. et al. Hepatic stellate cells and intralobular innervation in human liver cirrhosis. Hum. Pathol. 28, 953–959 (1997).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Goddard, C. J. et al. Localisation and semiquantitative assessment of hepatic procollagen mRNA in primary biliary cirrhosis. Gut 43, 433–440 (1998).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Iwaisako, K. et al. Origin of myofibroblasts in the fibrotic liver in mice. Proc. Natl Acad. Sci. USA 111, E3297–E3305 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Nishio, T. et al. Activated hepatic stellate cells and portal fibroblasts contribute to cholestatic liver fibrosis in MDR2 knockout mice. J. Hepatol. 71, 573–585 (2019).

    Article 

    Google Scholar
     

  • 20.

    Dranoff, J. A. & Wells, R. G. Portal fibroblasts: underappreciated mediators of biliary fibrosis. Hepatology 51, 1438–1444 (2010).

    Article 

    Google Scholar
     

  • 21.

    Zavadil, J. et al. Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta. Proc. Natl Acad. Sci. USA 98, 6686–6691 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Chu, A. S. et al. Lineage tracing demonstrates no evidence of cholangiocyte epithelial-to-mesenchymal transition in murine models of hepatic fibrosis. Hepatology 53, 1685–1695 (2011).

    Article 

    Google Scholar
     

  • 23.

    Russo, F. P. et al. The bone marrow functionally contributes to liver fibrosis. Gastroenterology 130, 1807–1821 (2006).

    Article 

    Google Scholar
     

  • 24.

    Kallis, Y. N. & Forbes, S. J. The bone marrow and liver fibrosis: friend or foe? Gastroenterology 137, 1218–1221 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Short, B. J., Brouard, N. & Simmons, P. J. Prospective isolation of mesenchymal stem cells from mouse compact bone. Methods Mol. Biol. 482, 259–268 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Simmons, P. J., Przepiorka, D., Thomas, E. D. & Torok-Storb, B. Host origin of marrow stromal cells following allogeneic bone marrow transplantation. Nature 328, 429–432 (1987).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Song, L. & Tuan, R. S. Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB J. 18, 980–982 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Hashimoto, N., Jin, H., Liu, T., Chensue, S. W. & Phan, S. H. Bone marrow-derived progenitor cells in pulmonary fibrosis. J. Clin. Invest. 113, 243–252 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Iredale, J. P. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J. Clin. Invest. 117, 539–548 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Thorgeirsson, S. S. & Grisham, J. W. Hematopoietic cells as hepatocyte stem cells: a critical review of the evidence. Hepatology 43, 2–8 (2006).

    Article 

    Google Scholar
     

  • 31.

    Alison, M. R., Islam, S. & Lim, S. Stem cells in liver regeneration, fibrosis and cancer: the good, the bad and the ugly. J. Pathol. 217, 282–298 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Kisseleva, T. et al. Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J. Hepatol. 45, 429–438 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Kharaziha, P. et al. Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I-II clinical trial. Eur. J. Gastroenterol. Hepatol. 21, 1199–1205 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Geerts, A. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin. Liver Dis. 21, 311–335 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Senoo, H., Kojima, N. & Sato, M. Vitamin A-storing cells (stellate cells). Vitam. Horm. 75, 131–159 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Hazra, S. et al. Peroxisome proliferator-activated receptor gamma induces a phenotypic switch from activated to quiescent hepatic stellate cells. J. Biol. Chem. 279, 11392–11401 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    She, H., Xiong, S., Hazra, S. & Tsukamoto, H. Adipogenic transcriptional regulation of hepatic stellate cells. J. Biol. Chem. 280, 4959–4967 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Koyama, Y. et al. Mesothelin/mucin 16 signaling in activated portal fibroblasts regulates cholestatic liver fibrosis. J. Clin. Invest. 127, 1254–1270 (2017).

    Article 

    Google Scholar
     

  • 39.

    Xu, F., Liu, C., Zhou, D. & Zhang, L. TGF-β/SMAD pathway and its regulation in hepatic fibrosis. J. Histochem. Cytochem. 64, 157–167 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Dooley, S. et al. Transforming growth factor beta signal transduction in hepatic stellate cells via Smad2/3 phosphorylation, a pathway that is abrogated during in vitro progression to myofibroblasts. TGFβ signal transduction during transdifferentiation of hepatic stellate cells. FEBS Lett. 502, 4–10 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 41.

    Meng, F. et al. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 143, 765–776.e3 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 42.

    Liu, Y. et al. IL-13 induces connective tissue growth factor in rat hepatic stellate cells via TGF-beta-independent Smad signaling. J. Immunol. 187, 2814–2823 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 43.

    Kordes, C., Sawitza, I., Gotze, S., Herebian, D. & Haussinger, D. Hepatic stellate cells contribute to progenitor cells and liver regeneration. J. Clin. Invest. 124, 5503–5515 (2014).

    Article 

    Google Scholar
     

  • 44.

    Lua, I., James, D., Wang, J., Wang, K. S. & Asahina, K. Mesodermal mesenchymal cells give rise to myofibroblasts, but not epithelial cells, in mouse liver injury. Hepatology 60, 311–322 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 45.

    Zhu, C. et al. Hepatocyte Notch activation induces liver fibrosis in nonalcoholic steatohepatitis. Sci. Transl Med. 10, eaat0344 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 46.

    Wang, X. et al. Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis. Cell Metab. 24, 848–862 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 47.

    Lan, T., Kisseleva, T. & Brenner, D. A. Deficiency of NOX1 or NOX4 prevents liver inflammation and fibrosis in mice through inhibition of hepatic stellate cell activation. PLoS ONE 10, e0129743 (2015).

    Article 

    Google Scholar
     

  • 48.

    Xie, G. et al. Cross-talk between Notch and Hedgehog regulates hepatic stellate cell fate in mice. Hepatology 58, 1801–1813 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 49.

    Lee, Y. S. et al. Exosomes derived from palmitic acid-treated hepatocytes induce fibrotic activation of hepatic stellate cells. Sci. Rep. 7, 3710 (2017).

    Article 

    Google Scholar
     

  • 50.

    Mridha, A. R. et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J. Hepatol. 66, 1037–1046 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 51.

    Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 52.

    Meier, A. et al. Inhibition of human neutrophil extracellular trap (NET) production by propofol and lipid emulsion. Front. Pharmacol. 10, 323 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 53.

    Saijou, E. et al. Neutrophils alleviate fibrosis in the CCl4-induced mouse chronic liver injury model. Hepatol. Commun. 2, 703–717 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 54.

    Moles, A. et al. A TLR2/S100A9/CXCL-2 signaling network is necessary for neutrophil recruitment in acute and chronic liver injury in the mouse. J. Hepatol. 60, 782–791 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 55.

    Gehrke, N. et al. Loss of cellular FLICE-inhibitory protein promotes acute cholestatic liver injury and inflammation from bile duct ligation. Am. J. Physiol. Gastrointest. Liver Physiol. 314, G319–G333 (2018).

    Article 

    Google Scholar
     

  • 56.

    Gao, B. & Bataller, R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 141, 1572–1585 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 57.

    Karlmark, K. R. et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 50, 261–274 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 58.

    Seki, E. et al. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat. Med. 13, 1324–1332 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 59.

    Krenkel, O. & Tacke, F. Liver macrophages in tissue homeostasis and disease. Nat. Rev. Immunol. 17, 306–321 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 60.

    Hellerbrand, C., Stefanovic, B., Giordano, F., Burchardt, E. R. & Brenner, D. A. The role of TGFbeta1 in initiating hepatic stellate cell activation in vivo. J. Hepatol. 30, 77–87 (1999).

    CAS 
    Article 

    Google Scholar
     

  • 61.

    de Gouville, A. C. et al. Inhibition of TGF-β signaling by an ALK5 inhibitor protects rats from dimethylnitrosamine-induced liver fibrosis. Br. J. Pharmacol. 145, 166–177 (2005).

    Article 

    Google Scholar
     

  • 62.

    Bonniaud, P. et al. TGF-β and Smad3 signaling link inflammation to chronic fibrogenesis. J. Immunol. 175, 5390–5395 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 63.

    Kulkarni, A. B. & Karlsson, S. Inflammation and TGF beta 1: lessons from the TGF beta 1 null mouse. Res. Immunol. 148, 453–456 (1997).

    CAS 
    Article 

    Google Scholar
     

  • 64.

    Miura, K. et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology 139, 323–334.e7 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 65.

    Sudo, K., Yamada, Y., Moriwaki, H., Saito, K. & Seishima, M. Lack of tumor necrosis factor receptor type 1 inhibits liver fibrosis induced by carbon tetrachloride in mice. Cytokine 29, 236–244 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 66.

    Liu, C. et al. Transcriptional repression of the transforming growth factor beta (TGF-beta) Pseudoreceptor BMP and activin membrane-bound inhibitor (BAMBI) by Nuclear Factor kappaB (NF-kappaB) p50 enhances TGF-beta signaling in hepatic stellate cells. J. Biol. Chem. 289, 7082–7091 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 67.

    Kolls, J. K. & Linden, A. Interleukin-17 family members and inflammation. Immunity 21, 467–476 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 68.

    Zenewicz, L. A. et al. Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity 27, 647–659 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 69.

    Radaeva, S., Sun, R., Pan, H. N., Hong, F. & Gao, B. Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology 39, 1332–1342 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 70.

    Baeck, C. et al. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut 61, 416–426 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 71.

    Duffield, J. S. et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 115, 56–65 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 72.

    Ramachandran, P. et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc. Natl Acad. Sci. USA 109, E3186–E3195 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 73.

    Iredale, J. P. Hepatic stellate cell behavior during resolution of liver injury. Semin. Liver Dis. 21, 427–436 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 74.

    Shetty, S., Lalor, P. F. & Adams, D. H. Liver sinusoidal endothelial cells – gatekeepers of hepatic immunity. Nat. Rev. Gastroenterol. Hepatol. 15, 555–567 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 75.

    Xie, G. et al. Role of differentiation of liver sinusoidal endothelial cells in progression and regression of hepatic fibrosis in rats. Gastroenterology 142, 918–927.e6 (2012).

    Article 

    Google Scholar
     

  • 76.

    Deleve, L. D., Wang, X. & Guo, Y. Sinusoidal endothelial cells prevent rat stellate cell activation and promote reversion to quiescence. Hepatology 48, 920–930 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 77.

    DeLeve, L. D., Wang, X., Hu, L., McCuskey, M. K. & McCuskey, R. S. Rat liver sinusoidal endothelial cell phenotype is maintained by paracrine and autocrine regulation. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G757–G763 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 78.

    Maretti-Mira, A. C., Wang, X., Wang, L. & DeLeve, L. D. Incomplete differentiation of engrafted bone marrow endothelial progenitor cells initiates hepatic fibrosis in the rat. Hepatology 69, 1259–1272 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 79.

    Ding, B. S. et al. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 505, 97–102 (2014).

    Article 

    Google Scholar
     

  • 80.

    Desmouliere, A. et al. Extracellular matrix deposition, lysyl oxidase expression, and myofibroblastic differentiation during the initial stages of cholestatic fibrosis in the rat. Lab. Invest. 76, 765–778 (1997).

    CAS 

    Google Scholar
     

  • 81.

    Bucala, R., Spiegel, L. A., Chesney, J., Hogan, M. & Cerami, A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol. Med. 1, 71–81 (1994).

    CAS 
    Article 

    Google Scholar
     

  • 82.

    Abe, R., Donnelly, S. C., Peng, T., Bucala, R. & Metz, C. N. Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J. Immunol. 166, 7556–7562 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 83.

    Kisseleva, T. & Brenner, D. A. Fibrogenesis of parenchymal organs. Proc. Am. Thorac. Soc. 5, 338–342 (2008).

    Article 

    Google Scholar
     

  • 84.

    Strieter, R. M., Gomperts, B. N. & Keane, M. P. The role of CXC chemokines in pulmonary fibrosis. J. Clin. Invest. 117, 549–556 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 85.

    Karhadkar, T. R., Pilling, D., Cox, N. & Gomer, R. H. Sialidase inhibitors attenuate pulmonary fibrosis in a mouse model. Sci. Rep. 7, 15069 (2017).

    Article 

    Google Scholar
     

  • 86.

    Quan, T. E., Cowper, S., Wu, S. P., Bockenstedt, L. K. & Bucala, R. Circulating fibrocytes: collagen-secreting cells of the peripheral blood. Int. J. Biochem. Cell Biol. 36, 598–606 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 87.

    Phillips, R. J. et al. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J. Clin. Invest. 114, 438–446 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 88.

    Scholten, D. et al. Migration of fibrocytes in fibrogenic liver injury. Am. J. Pathol. 179, 189–198 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 89.

    Xu, J. et al. Contribution of bone marrow-derived fibrocytes to liver fibrosis. Hepatobiliary Surg. Nutr. 4, 34–47 (2015).


    Google Scholar
     

  • 90.

    Kisseleva, T. et al. Fibrocyte-like cells recruited to the spleen support innate and adaptive immune responses to acute injury or infection. J. Mol. Med. 89, 997–1013 (2011).

    Article 

    Google Scholar
     

  • 91.

    El-Serag, H. B. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142, 1264–1273.e1 (2012).

    Article 

    Google Scholar
     

  • 92.

    Tornesello, M. L., Buonaguro, L., Izzo, F. & Buonaguro, F. M. Molecular alterations in hepatocellular carcinoma associated with hepatitis B and hepatitis C infections. Oncotarget 7, 25087–25102 (2016).

    Article 

    Google Scholar
     

  • 93.

    Liu, W., Baker, R. D., Bhatia, T., Zhu, L. & Baker, S. S. Pathogenesis of nonalcoholic steatohepatitis. Cell. Mol. Life Sci. 73, 1969–1987 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 94.

    Mazzanti, R., Arena, U. & Tassi, R. Hepatocellular carcinoma: Where are we? World J. Exp. Med. 6, 21–36 (2016).

    Article 

    Google Scholar
     

  • 95.

    Byass, P. The global burden of liver disease: a challenge for methods and for public health. BMC Med. 12, 159 (2014).

    Article 

    Google Scholar
     

  • 96.

    Paquissi, F. C. Immunity and fibrogenesis: the role of Th17/IL-17 axis in HBV and HCV-induced chronic hepatitis and progression to cirrhosis. Front. Immunol. 8, 1195 (2017).

    Article 

    Google Scholar
     

  • 97.

    Kanda, T., Goto, T., Hirotsu, Y., Moriyama, M. & Omata, M. Molecular mechanisms driving progression of liver cirrhosis towards hepatocellular carcinoma in chronic hepatitis B and C infections: a review. Int. J. Mol. Sci. 20, 1358 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 98.

    Loomba, R. & Sanyal, A. J. The global NAFLD epidemic. Nat. Rev. Gastroenterol. Hepatol. 10, 686–690 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 99.

    Kleiner, D. E. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 1313–1321 (2005).

    Article 

    Google Scholar
     

  • 100.

    Di Rosa, M. & Malaguarnera, L. Genetic variants in candidate genes influencing NAFLD progression. J. Mol. Med. 90, 105–118 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 101.

    Kim, J. Y. et al. ER stress drives lipogenesis and steatohepatitis via caspase-2 activation of S1P. Cell 175, 133–145.e15 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 102.

    Musso, G. et al. Adipokines in NASH: postprandial lipid metabolism as a link between adiponectin and liver disease. Hepatology 42, 1175–1183 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 103.

    Malaguarnera, M., Di Rosa, M., Nicoletti, F. & Malaguarnera, L. Molecular mechanisms involved in NAFLD progression. J. Mol. Med. 87, 679–695 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 104.

    Maricic, I. et al. Differential activation of hepatic invariant NKT cell subsets plays a key role in progression of nonalcoholic steatohepatitis. J. Immunol. 201, 3017–3035 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 105.

    Jang, C. et al. The small intestine converts dietary fructose into glucose and organic acids. Cell Metab. 27, 351–361.e3 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 106.

    Stanhope, K. L. et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Invest. 119, 1322–1334 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 107.

    Seki, E. & Schnabl, B. Role of innate immunity and the microbiota in liver fibrosis: crosstalk between the liver and gut. J. Physiol. 590, 447–458 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 108.

    Moschen, A. R., Kaser, S. & Tilg, H. Non-alcoholic steatohepatitis: a microbiota-driven disease. Trends Endocrinol. Metab. 24, 537–545 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 109.

    Llorente, C. et al. Gastric acid suppression promotes alcoholic liver disease by inducing overgrowth of intestinal Enterococcus. Nat. Commun. 8, 837 (2017).

    Article 

    Google Scholar
     

  • 110.

    Zhou, D. et al. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota. Sci. Rep. 7, 1529 (2017).

    Article 

    Google Scholar
     

  • 111.

    Shalapour, S. et al. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature 551, 340–345 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 112.

    Teschke, R. Alcoholic liver disease: alcohol metabolism, cascade of molecular mechanisms, cellular targets, and clinical aspects. Biomedicines 6, 106 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 113.

    O’Shea, R. S., Dasarathy, S., McCullough, A. J., Practice Guideline Committee of the American Association for the Study of Liver Diseases & Practice Parameters Committee of the American College of Gastroenterology. Alcoholic liver disease. Hepatology 51, 307–328 (2010).

    Article 

    Google Scholar
     

  • 114.

    Lucey, M. R., Mathurin, P. & Morgan, T. R. Alcoholic hepatitis. N. Engl. J. Med. 360, 2758–2769 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 115.

    Maltby, J., Wright, S., Bird, G. & Sheron, N. Chemokine levels in human liver homogenates: associations between GRO alpha and histopathological evidence of alcoholic hepatitis. Hepatology 24, 1156–1160 (1996).

    CAS 

    Google Scholar
     

  • 116.

    Dominguez, M. et al. Hepatic expression of CXC chemokines predicts portal hypertension and survival in patients with alcoholic hepatitis. Gastroenterology 136, 1639–1650 (2009).

    Article 

    Google Scholar
     

  • 117.

    Lemmers, A. et al. The interleukin-17 pathway is involved in human alcoholic liver disease. Hepatology 49, 646–657 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 118.

    Friedman, S. L. Mechanisms of hepatic fibrogenesis. Gastroenterology 134, 1655–1669 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 119.

    Ikenaga, N. et al. Selective targeting of lysyl oxidase-like 2 (LOXL2) suppresses hepatic fibrosis progression and accelerates its reversal. Gut 66, 1697–1708 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 120.

    Chen, P. et al. Microbiota and alcoholic liver disease. Alcohol. Clin. Exp. Res. 40, 1791–1792 (2016).

    Article 

    Google Scholar
     

  • 121.

    Hirschfield, G. M. & Heathcote, E. J. Cholestasis and cholestatic syndromes. Curr. Opin. Gastroenterol. 25, 175–179 (2009).

    Article 

    Google Scholar
     

  • 122.

    Wagner, M., Zollner, G. & Trauner, M. Nuclear receptor regulation of the adaptive response of bile acid transporters in cholestasis. Semin. Liver Dis. 30, 160–177 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 123.

    Vavassori, P., Mencarelli, A., Renga, B., Distrutti, E. & Fiorucci, S. The bile acid receptor FXR is a modulator of intestinal innate immunity. J. Immunol. 183, 6251–6261 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 124.

    Fickert, P. et al. Farnesoid X receptor critically determines the fibrotic response in mice but is expressed to a low extent in human hepatic stellate cells and periductal myofibroblasts. Am. J. Pathol. 175, 2392–2405 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 125.

    Gulamhusein, A. F. & Hirschfield, G. M. Primary biliary cholangitis: pathogenesis and therapeutic opportunities. Nat. Rev. Gastroenterol. Hepatol. 17, 93–110 (2020).

    Article 

    Google Scholar
     

  • 126.

    Eaton, J. E., Talwalkar, J. A., Lazaridis, K. N., Gores, G. J. & Lindor, K. D. Pathogenesis of primary sclerosing cholangitis and advances in diagnosis and management. Gastroenterology 145, 521–536 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 127.

    Feldman, A. G. & Sokol, R. J. Neonatal cholestasis: emerging molecular diagnostics and potential novel therapeutics. Nat. Rev. Gastroenterol. Hepatol. 16, 346–360 (2019).

    Article 

    Google Scholar
     

  • 128.

    Shneider, B. L. et al. A multicenter study of the outcome of biliary atresia in the United States, 1997 to 2000. J. Pediatr. 148, 467–474 (2006).

    Article 

    Google Scholar
     

  • 129.

    Ramachandran, P. & Iredale, J. P. Reversibility of liver fibrosis. Ann. Hepatol. 8, 283–291 (2009).

    Article 

    Google Scholar
     

  • 130.

    Hammel, P. et al. Regression of liver fibrosis after biliary drainage in patients with chronic pancreatitis and stenosis of the common bile duct. N. Engl. J. Med. 344, 418–423 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 131.

    Arthur, M. J. Reversibility of liver fibrosis and cirrhosis following treatment for hepatitis C. Gastroenterology 122, 1525–1528 (2002).

    Article 

    Google Scholar
     

  • 132.

    Kweon, Y. O. et al. Decreasing fibrogenesis: an immunohistochemical study of paired liver biopsies following lamivudine therapy for chronic hepatitis B. J. Hepatol. 35, 749–755 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 133.

    Dixon, J. B., Bhathal, P. S., Hughes, N. R. & O’Brien, P. E. Nonalcoholic fatty liver disease: improvement in liver histological analysis with weight loss. Hepatology 39, 1647–1654 (2004).

    Article 

    Google Scholar
     

  • 134.

    Czaja, A. J. & Carpenter, H. A. Decreased fibrosis during corticosteroid therapy of autoimmune hepatitis. J. Hepatol. 40, 646–652 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 135.

    Pares, A., Caballeria, J., Bruguera, M., Torres, M. & Rodes, J. Histological course of alcoholic hepatitis. Influence of abstinence, sex and extent of hepatic damage. J. Hepatol. 2, 33–42 (1986).

    CAS 
    Article 

    Google Scholar
     

  • 136.

    Hafeez, S. & Ahmed, M. H. Bariatric surgery as potential treatment for nonalcoholic fatty liver disease: a future treatment by choice or by chance? J. Obes. 2013, 839275 (2013).

    Article 

    Google Scholar
     

  • 137.

    Issa, R. et al. Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking. Gastroenterology 126, 1795–1808 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 138.

    Issa, R. et al. Apoptosis of hepatic stellate cells: involvement in resolution of biliary fibrosis and regulation by soluble growth factors. Gut 48, 548–557 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 139.

    Schnabl, B. et al. The role of Smad3 in mediating mouse hepatic stellate cell activation. Hepatology 34, 89–100 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 140.

    Kendall, T. J. et al. p75 Neurotrophin receptor signaling regulates hepatic myofibroblast proliferation and apoptosis in recovery from rodent liver fibrosis. Hepatology 49, 901–910 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 141.

    Patel, R. et al. Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation 104, 317–324 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 142.

    Zeisberg, E. M. et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat. Med. 13, 952–961 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 143.

    Lee, C. G. et al. Early growth response gene 1-mediated apoptosis is essential for transforming growth factor beta1-induced pulmonary fibrosis. J. Exp. Med. 200, 377–389 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 144.

    Huby, A. C. et al. Restoration of podocyte structure and improvement of chronic renal disease in transgenic mice overexpressing renin. PLoS ONE 4, e6721 (2009).

    Article 

    Google Scholar
     

  • 145.

    Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 146.

    Schnabl, B., Purbeck, C. A., Choi, Y. H., Hagedorn, C. H. & Brenner, D. Replicative senescence of activated human hepatic stellate cells is accompanied by a pronounced inflammatory but less fibrogenic phenotype. Hepatology 37, 653–664 (2003).

    CAS 
    Article 

    Google Scholar
     

  • 147.

    Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–636 (1965).

    CAS 
    Article 

    Google Scholar
     

  • 148.

    Collado, M. & Serrano, M. Senescence in tumours: evidence from mice and humans. Nat. Rev. Cancer 10, 51–57 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 149.

    Takahashi, A. et al. Downregulation of cytoplasmic DNases is implicated in cytoplasmic DNA accumulation and SASP in senescent cells. Nat. Commun. 9, 1249 (2018).

    Article 

    Google Scholar
     

  • 150.

    Kong, X., Feng, D., Mathews, S. & Gao, B. Hepatoprotective and anti-fibrotic functions of interleukin-22: therapeutic potential for the treatment of alcoholic liver disease. J. Gastroenterol. Hepatol. 28, 56–60 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 151.

    Novo, E. et al. Overexpression of Bcl-2 by activated human hepatic stellate cells: resistance to apoptosis as a mechanism of progressive hepatic fibrogenesis in humans. Gut 55, 1174–1182 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 152.

    Gao, B., Radaeva, S. & Park, O. Liver natural killer and natural killer T cells: immunobiology and emerging roles in liver diseases. J. Leukoc. Biol. 86, 513–528 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 153.

    Radaeva, S. et al. Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 130, 435–452 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 154.

    Glassner, A. et al. NK cells from HCV-infected patients effectively induce apoptosis of activated primary human hepatic stellate cells in a TRAIL-, FasL- and NKG2D-dependent manner. Lab. Invest. 92, 967–977 (2012).

    Article 

    Google Scholar
     

  • 155.

    Puche, J. E. et al. A novel murine model to deplete hepatic stellate cells uncovers their role in amplifying liver damage in mice. Hepatology 57, 339–350 (2013).

    Article 

    Google Scholar
     

  • 156.

    Parsons, C. J. et al. Antifibrotic effects of a tissue inhibitor of metalloproteinase-1 antibody on established liver fibrosis in rats. Hepatology 40, 1106–1115 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 157.

    Oakley, F. et al. Inhibition of inhibitor of kappaB kinases stimulates hepatic stellate cell apoptosis and accelerated recovery from rat liver fibrosis. Gastroenterology 128, 108–120 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 158.

    Jeong, W. I., Park, O., Radaeva, S. & Gao, B. STAT1 inhibits liver fibrosis in mice by inhibiting stellate cell proliferation and stimulating NK cell cytotoxicity. Hepatology 44, 1441–1451 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 159.

    Mohar, I., Brempelis, K. J., Murray, S. A., Ebrahimkhani, M. R. & Crispe, I. N. Isolation of non-parenchymal cells from the mouse liver. Methods Mol. Biol. 1325, 3–17 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 160.

    Geissmann, F. et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol. 3, e113 (2005).

    Article 

    Google Scholar
     

  • 161.

    Wehr, A. et al. Chemokine receptor CXCR6-dependent hepatic NK T cell accumulation promotes inflammation and liver fibrosis. J. Immunol. 190, 5226–5236 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 162.

    Ishikawa, S. et al. CD1d-restricted natural killer T cells contribute to hepatic inflammation and fibrogenesis in mice. J. Hepatol. 54, 1195–1204 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 163.

    Popov, Y. et al. Macrophage-mediated phagocytosis of apoptotic cholangiocytes contributes to reversal of experimental biliary fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G323–G334 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 164.

    Uchinami, H., Seki, E., Brenner, D. A. & D’Armiento, J. Loss of MMP 13 attenuates murine hepatic injury and fibrosis during cholestasis. Hepatology 44, 420–429 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 165.

    Wei, J. et al. IkappaB kinase-beta inhibitor attenuates hepatic fibrosis in mice. World J. Gastroenterol. 17, 5203–5213 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 166.

    Kisseleva, T. & Brenner, D. A. Inactivation of myofibroblasts during regression of liver fibrosis. Cell Cycle 12, 381–382 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 167.

    Hernandez-Gea, V. et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142, 938–946 (2012).

    Article 

    Google Scholar
     

  • 168.

    Kluwe, J. et al. Absence of hepatic stellate cell retinoid lipid droplets does not enhance hepatic fibrosis but decreases hepatic carcinogenesis. Gut 60, 1260–1268 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 169.

    Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317, 256–260 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 170.

    Wells, R. G. The role of matrix stiffness in regulating cell behavior. Hepatology 47, 1394–1400 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 171.

    Gaca, M. D. et al. Basement membrane-like matrix inhibits proliferation and collagen synthesis by activated rat hepatic stellate cells: evidence for matrix-dependent deactivation of stellate cells. Matrix Biol. 22, 229–239 (2003).

    CAS 
    Article 

    Google Scholar
     

  • 172.

    Mann, J. et al. MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology 138, 705–714 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 173.

    Perugorria, M. J. et al. Histone methyltransferase ASH1 orchestrates fibrogenic gene transcription during myofibroblast transdifferentiation. Hepatology 56, 1129–1139 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 174.

    Liu, X. et al. Identification of lineage-specific transcription factors that prevent activation of hepatic stellate cells and promote fibrosis resolution. Gastroenterology 158, 1728–1744.e14 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 175.

    Schuppan, D., Ashfaq-Khan, M., Yang, A. T. & Kim, Y. O. Liver fibrosis: Direct antifibrotic agents and targeted therapies. Matrix Biol. 68–69, 435–451 (2018).

    Article 

    Google Scholar
     

  • 176.

    Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M. & Sanyal, A. J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 24, 908–922 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 177.

    Tsuchida, T. & Friedman, S. L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 14, 397–411 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 178.

    Feld, J. J. et al. Sofosbuvir and Velpatasvir for HCV genotype 1, 2, 4, 5, and 6 infection. N. Engl. J. Med. 373, 2599–2607 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 179.

    Lynch, S. M. & Wu, G. Y. Hepatitis C virus: a review of treatment guidelines, cost-effectiveness, and access to therapy. J. Clin. Transl Hepatol. 4, 310–319 (2016).


    Google Scholar
     

  • 180.

    Chen Yi Mei, S. L. G. et al. Sustained virological response halts fibrosis progression: A long-term follow-up study of people with chronic hepatitis C infection. PLoS ONE 12, e0185609 (2017).

    Article 

    Google Scholar
     

  • 181.

    Vilar-Gomez, E. et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology 149, 367–378.e5 (2015).

    Article 

    Google Scholar
     

  • 182.

    Lassailly, G. et al. Bariatric surgery reduces features of nonalcoholic steatohepatitis in morbidly obese patients. Gastroenterology 149, 379–388 (2015).

    Article 

    Google Scholar
     

  • 183.

    Kim, C. W. et al. Acetyl CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench investigation. Cell Metab. 26, 576 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 184.

    Sonoda, J., Chen, M. Z. & Baruch, A. FGF21-receptor agonists: an emerging therapeutic class for obesity-related diseases. Horm. Mol. Biol. Clin. Investig. https://doi.org/10.1515/hmbci-2017-0002 (2017).

  • 185.

    Gao, B., Ahmad, M. F., Nagy, L. E. & Tsukamoto, H. Inflammatory pathways in alcoholic steatohepatitis. J. Hepatol. 70, 249–259 (2019).

    Article 

    Google Scholar
     

  • 186.

    Canbay, A., Feldstein, A., Baskin-Bey, E., Bronk, S. F. & Gores, G. J. The caspase inhibitor IDN-6556 attenuates hepatic injury and fibrosis in the bile duct ligated mouse. J. Pharmacol. Exp. Ther. 308, 1191–1196 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 187.

    Iwaisako, K. et al. Protection from liver fibrosis by a peroxisome proliferator-activated receptor delta agonist. Proc. Natl Acad. Sci. USA 109, E1369–E1376 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 188.

    Zhang, S., Wang, J., Liu, Q. & Harnish, D. C. Farnesoid X receptor agonist WAY-362450 attenuates liver inflammation and fibrosis in murine model of non-alcoholic steatohepatitis. J. Hepatol. 51, 380–388 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 189.

    Xiang, M. et al. Targeting hepatic TRAF1-ASK1 signaling to improve inflammation, insulin resistance, and hepatic steatosis. J. Hepatol. 64, 1365–1377 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 190.

    Ratziu, V. et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-alpha and -delta, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology 150, 1147–1159 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 191.

    Ratziu, V. et al. REGENERATE: design of a pivotal, randomised, phase 3 study evaluating the safety and efficacy of obeticholic acid in patients with fibrosis due to nonalcoholic steatohepatitis. Contemp. Clin. Trials 84, 105803 (2019).

    Article 

    Google Scholar
     

  • 192.

    Brandl, K. et al. Dysregulation of serum bile acids and FGF19 in alcoholic hepatitis. J. Hepatol. 69, 396–405 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 193.

    Gross, O., Thomas, C. J., Guarda, G. & Tschopp, J. The inflammasome: an integrated view. Immunol. Rev. 243, 136–151 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 194.

    Schroder, K., Zhou, R. & Tschopp, J. The NLRP3 inflammasome: a sensor for metabolic danger? Science 327, 296–300 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 195.

    Ahn, H. et al. Methylsulfonylmethane inhibits NLRP3 inflammasome activation. Cytokine 71, 223–231 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 196.

    Lamkanfi, M. et al. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J. Cell Biol. 187, 61–70 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 197.

    Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 198.

    Watanabe, A. et al. Inflammasome-mediated regulation of hepatic stellate cells. Am. J. Physiol. Gastrointest. Liver Physiol 296, G1248–G1257 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 199.

    Linton, S. D. Caspase inhibitors: a pharmaceutical industry perspective. Curr. Top. Med. Chem. 5, 1697–1717 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 200.

    MacKenzie, S. H., Schipper, J. L. & Clark, A. C. The potential for caspases in drug discovery. Curr. Opin. Drug Discov. Devel. 13, 568–576 (2010).

    CAS 

    Google Scholar
     

  • 201.

    Shiffman, M. et al. Randomised clinical trial: emricasan versus placebo significantly decreases ALT and caspase 3/7 activation in subjects with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 49, 64–73 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 202.

    Mandrekar, P., Ambade, A., Lim, A., Szabo, G. & Catalano, D. An essential role for monocyte chemoattractant protein-1 in alcoholic liver injury: regulation of proinflammatory cytokines and hepatic steatosis in mice. Hepatology 54, 2185–2197 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 203.

    Petrasek, J. et al. IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. J. Clin. Invest. 122, 3476–3489 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 204.

    Seki, E. et al. CCR2 promotes hepatic fibrosis in mice. Hepatology 50, 185–197 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 205.

    Seki, E. et al. CCR1 and CCR5 promote hepatic fibrosis in mice. J. Clin. Invest. 119, 1858–1870 (2009).

    CAS 

    Google Scholar
     

  • 206.

    Pilling, D. et al. Reduction of bleomycin-induced pulmonary fibrosis by serum amyloid P. J. Immunol. 179, 4035–4044 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 207.

    Verna, E. C. et al. Novel association between serum pentraxin-2 levels and advanced fibrosis in well-characterised patients with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 42, 582–590 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 208.

    Gomes, A. L. et al. Metabolic inflammation-associated IL-17A causes non-alcoholic steatohepatitis and hepatocellular carcinoma. Cancer Cell 30, 161–175 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 209.

    Hammerich, L., Heymann, F. & Tacke, F. Role of IL-17 and Th17 cells in liver diseases. Clin. Dev. Immunol. 2011, 345803 (2011).

    Article 

    Google Scholar
     

  • 210.

    Ivanov, I. I. et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 211.

    Zhang, X., Jin, J., Peng, X., Ramgolam, V. S. & Markovic-Plese, S. Simvastatin inhibits IL-17 secretion by targeting multiple IL-17-regulatory cytokines and by inhibiting the expression of IL-17 transcription factor RORC in CD4+ lymphocytes. J. Immunol. 180, 6988–6996 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 212.

    Hueber, W. et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61, 1693–1700 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 213.

    Ma, H. Y. et al. IL-17 signaling in steatotic hepatocytes and macrophages promotes hepatocellular carcinoma in alcohol-related liver disease. J. Hepatol. 72, 946–959 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 214.

    Ki, S. H. et al. Interleukin-22 treatment ameliorates alcoholic liver injury in a murine model of chronic-binge ethanol feeding: role of signal transducer and activator of transcription 3. Hepatology 52, 1291–1300 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 215.

    Weston, C. J. et al. Vascular adhesion protein-1 promotes liver inflammation and drives hepatic fibrosis. J. Clin. Invest. 125, 501–520 (2015).

    Article 

    Google Scholar
     

  • 216.

    Fan, X. et al. Attenuation of CCl4-induced hepatic fibrosis in mice by vaccinating against TGF-beta1. PLoS ONE 8, e82190 (2013).

    Article 

    Google Scholar
     

  • 217.

    Ling, H. et al. Transforming growth factor beta neutralization ameliorates pre-existing hepatic fibrosis and reduces cholangiocarcinoma in thioacetamide-treated rats. PLoS ONE 8, e54499 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 218.

    Akhurst, R. J. & Hata, A. Targeting the TGFbeta signalling pathway in disease. Nat. Rev. Drug Discov. 11, 790–811 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 219.

    Munger, J. S. et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96, 319–328 (1999).

    CAS 
    Article 

    Google Scholar
     

  • 220.

    Henderson, N. C. et al. Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat. Med. 19, 1617–1624 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 221.

    Peng, Z. W. et al. Integrin alphavbeta6 critically regulates hepatic progenitor cell function and promotes ductular reaction, fibrosis, and tumorigenesis. Hepatology 63, 217–232 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 222.

    Meurer, S. K. et al. Overexpression of endoglin modulates TGF-beta1-signalling pathways in a novel immortalized mouse hepatic stellate cell line. PLoS ONE 8, e56116 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 223.

    Blanco, F. J. et al. Interaction and functional interplay between endoglin and ALK-1, two components of the endothelial transforming growth factor-beta receptor complex. J. Cell Physiol. 204, 574–584 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 224.

    Duffy, A. G. et al. Phase I and preliminary phase II study of TRC105 in combination with sorafenib in hepatocellular carcinoma. Clin. Cancer Res. 23, 4633–4641 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 225.

    Rancoule, C. et al. Lysophosphatidic acid-1-receptor targeting agents for fibrosis. Expert Opin. Investig. Drugs 20, 657–667 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 226.

    Mazzocca, A. et al. Tumor-secreted lysophostatidic acid accelerates hepatocellular carcinoma progression by promoting differentiation of peritumoral fibroblasts in myofibroblasts. Hepatology 54, 920–930 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 227.

    Giannone, F. A. et al. Reversal of liver fibrosis by the antagonism of endocannabinoid CB1 receptor in a rat model of CCl4-induced advanced cirrhosis. Lab. Invest. 92, 384–395 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 228.

    Mejias, M. et al. Beneficial effects of sorafenib on splanchnic, intrahepatic, and portocollateral circulations in portal hypertensive and cirrhotic rats. Hepatology 49, 1245–1256 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 229.

    Qu, K. et al. New insight into the anti-liver fibrosis effect of multitargeted tyrosine kinase inhibitors: from molecular target to clinical trials. Front. Pharmacol. 6, 300 (2015).


    Google Scholar
     

  • 230.

    Aoyama, T. et al. Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent. Hepatology 56, 2316–2327 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 231.

    Moreno, M. et al. Reduction of advanced liver fibrosis by short-term targeted delivery of an angiotensin receptor blocker to hepatic stellate cells in rats. Hepatology 51, 942–952 (2012).


    Google Scholar
     

  • 232.

    Yang, L. et al. Attenuated hepatic inflammation and fibrosis in angiotensin type 1a receptor deficient mice. J. Hepatol. 43, 317–323 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 233.

    Yokohama, S. et al. Therapeutic efficacy of an angiotensin II receptor antagonist in patients with nonalcoholic steatohepatitis. Hepatology 40, 1222–1225 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 234.

    Yoshiji, H. et al. Renin-angiotensin system inhibitors as therapeutic alternatives in the treatment of chronic liver diseases. Curr. Med. Chem. 14, 2749–2754 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 235.

    Yoshiji, H. et al. Angiotensin-II induces the tissue inhibitor of metalloproteinases-1 through the protein kinase-C signaling pathway in rat liver fibrosis development. Hepatol. Res. 27, 51–56 (2003).

    CAS 
    Article 

    Google Scholar
     

  • 236.

    Abu Dayyeh, B. K., Yang, M., Dienstag, J. L. & Chung, R. T. The effects of angiotensin blocking agents on the progression of liver fibrosis in the HALT-C trial cohort. Dig. Dis. Sci. 56, 564–568 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 237.

    Sorokin, L. The impact of the extracellular matrix on inflammation. Nat. Rev. Immunol. 10, 712–723 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 238.

    Hynes, R. O. The extracellular matrix: not just pretty fibrils. Science 326, 1216–1219 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 239.

    Massey, V. L. et al. The hepatic “matrisome” responds dynamically to injury: characterization of transitional changes to the extracellular matrix in mice. Hepatology 65, 969–982 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 240.

    Mohammadi, M., Olsen, S. K. & Goetz, R. A protein canyon in the FGF-FGF receptor dimer selects from an a la carte menu of heparan sulfate motifs. Curr. Opin. Struct. Biol. 15, 506–516 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 241.

    Shi, Y. & Massague, J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113, 685–700 (2003).

    CAS 
    Article 

    Google Scholar
     

  • 242.

    Rahman, S. et al. Novel hepatocyte growth factor (HGF) binding domains on fibronectin and vitronectin coordinate a distinct and amplified Met-integrin induced signalling pathway in endothelial cells. BMC Cell Biol. 6, 8 (2005).

    Article 

    Google Scholar
     

  • 243.

    Wijelath, E. S. et al. Heparin-II domain of fibronectin is a vascular endothelial growth factor-binding domain: enhancement of VEGF biological activity by a singular growth factor/matrix protein synergism. Circ. Res. 99, 853–860 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 244.

    Wells, R. G. The role of matrix stiffness in hepatic stellate cell activation and liver fibrosis. J. Clin. Gastroenterol. 39, S158–S161 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 245.

    Bollyky, P. L. et al. Intact extracellular matrix and the maintenance of immune tolerance: high molecular weight hyaluronan promotes persistence of induced CD4+CD25+ regulatory T cells. J. Leukoc. Biol. 86, 567–572 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 246.

    Bollyky, P. L. et al. Cutting edge: high molecular weight hyaluronan promotes the suppressive effects of CD4+CD25+ regulatory T cells. J. Immunol. 179, 744–747 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 247.

    Meran, S. et al. Involvement of hyaluronan in regulation of fibroblast phenotype. J. Biol. Chem. 282, 25687–25697 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 248.

    Webber, J., Meran, S., Steadman, R. & Phillips, A. Hyaluronan orchestrates transforming growth factor-beta1-dependent maintenance of myofibroblast phenotype. J. Biol. Chem. 284, 9083–9092 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 249.

    Iredale, J. P. & Pellicoro, A. “It is a good morning exercise for a research scientist to discard a pet hypothesis every day before breakfast: it keeps him young” (Konrad Lorenz, 1903–1989). Gastroenterology 140, 1395–1398 (2011).

    Article 

    Google Scholar
     

  • 250.

    Hynes, R. O. & Naba, A. Overview of the matrisome–an inventory of extracellular matrix constituents and functions. Cold Spring Harb. Perspect. Biol. 4, a004903 (2012).

    Article 

    Google Scholar
     

  • 251.

    Brenner, D. A. et al. New aspects of hepatic fibrosis. J. Hepatol. 32, 32–38 (2000).

    CAS 
    Article 

    Google Scholar
     

  • 252.

    Popov, Y. et al. Tissue transglutaminase does not affect fibrotic matrix stability or regression of liver fibrosis in mice. Gastroenterology 140, 1642–1652 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 253.

    Liu, S. B. et al. Lysyl oxidase activity contributes to collagen stabilization during liver fibrosis progression and limits spontaneous fibrosis reversal in mice. FASEB J. 30, 1599–1609 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 254.

    Barry-Hamilton, V. et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat. Med. 16, 1009–1017 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 255.

    Loomba, R. et al. The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: a randomized, phase 2 trial. Hepatology 67, 549–559 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 256.

    Rowbottom, M. W. et al. Identification of 4-(aminomethyl)-6-(trifluoromethyl)-2-(phenoxy)pyridine derivatives as potent, selective, and orally efficacious inhibitors of the copper-dependent amine oxidase, lysyl oxidase-like 2 (LOXL2). J. Med. Chem. 60, 4403–4423 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 257.

    Lu, P., Takai, K., Weaver, V. M. & Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 3, a005058 (2011).

    Article 

    Google Scholar
     

  • 258.

    Brew, K. & Nagase, H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim. Biophys. Acta 1803, 55–71 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 259.

    Murphy, F. R. et al. Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition: implications for reversibility of liver fibrosis. J. Biol. Chem. 277, 11069–11076 (2002).

    CAS 
    Article 

    Google Scholar
     

  • 260.

    Zhang, L. P. et al. Increased expression of plasminogen activator and plasminogen activator inhibitor during liver fibrogenesis of rats: role of stellate cells. J. Hepatol. 31, 703–711 (1999).

    CAS 
    Article 

    Google Scholar
     

  • 261.

    Flevaris, P. & Vaughan, D. The role of plasminogen activator inhibitor type-1 in fibrosis. Semin. Thromb. Hemost. 43, 169–177 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 262.

    Hu, P. F. et al. Inhibition of plasminogen activator inhibitor-1 expression by siRNA in rat hepatic stellate cells. J. Gastroenterol. Hepatol. 23, 1917–1925 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 263.

    Sanyal, A. J. et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 362, 1675–1685 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 264.

    Mahady, S. E., Webster, A. C., Walker, S., Sanyal, A. & George, J. The role of thiazolidinediones in non-alcoholic steatohepatitis – a systematic review and meta analysis. J. Hepatol. 55, 1383–1390 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 265.

    Duran, A. et al. p62/SQSTM1 by binding to vitamin D receptor inhibits hepatic stellate cell activity, fibrosis, and liver cancer. Cancer Cell 30, 595–609 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 266.

    Wahsh, E., Abu-Elsaad, N., El-Karef, A. & Ibrahim, T. The vitamin D receptor agonist, calcipotriol, modulates fibrogenic pathways mitigating liver fibrosis in-vivo: an experimental study. Eur. J. Pharmacol. 789, 362–369 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 267.

    Hah, N., Sherman, M. H., Yu, R. T., Downes, M. & Evans, R. M. Targeting transcriptional and epigenetic reprogramming in stromal cells in fibrosis and cancer. Cold Spring Harb. Symp. Quant. Biol. 80, 249–255 (2015).

    Article 

    Google Scholar
     

  • 268.

    Ding, N., Liddle, C., Evans, R. M. & Downes, M. Hepatic actions of vitamin D receptor ligands: a sunshine option for chronic liver disease? Expert Rev. Clin. Pharmacol. 6, 597–599 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 269.

    Varga, J., Brenner D. & Phan S. E. Fibrosis Research. Methods and Protocols (Humana Press, 2005).

  • 270.

    Pellicoro, A. et al. Elastin accumulation is regulated at the level of degradation by macrophage metalloelastase (MMP-12) during experimental liver fibrosis. Hepatology 55, 1965–1975 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 271.

    Lee, Y. A., Wallace, M. C. & Friedman, S. L. Pathobiology of liver fibrosis: a translational success story. Gut 64, 830–841 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 272.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT00013598.

  • 273.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT01672866.

  • 274.

    Du, K. et al. Hedgehog-YAP signaling pathway regulates glutaminolysis to control activation of hepatic stellate cells. Gastroenterology 154, 1465–1479.e13 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 275.

    Lalor, P. F., Shields, P., Grant, A. & Adams, D. H. Recruitment of lymphocytes to the human liver. Immunol. Cell Biol. 80, 52–64 (2002).

    CAS 
    Article 

    Google Scholar
     

  • 276.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT01051219.

  • 277.

    Yoshiji, H., Kuriyama, S. & Fukui, H. Blockade of renin-angiotensin system in antifibrotic therapy. J. Gastroenterol. Hepatol. 22 (Suppl. 1), S93–S95 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 278.

    Kalluri, R. EMT: when epithelial cells decide to become mesenchymal-like cells. J. Clin. Invest. 119, 1417–1419 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 279.

    Okada, H., Danoff, T. M., Kalluri, R. & Neilson, E. G. Early role of Fsp1 in epithelial-mesenchymal transformation. Am. J. Physiol. 273, F563–F574 (1997).

    CAS 
    Article 

    Google Scholar
     

  • 280.

    Zavadil, J., Haley, J., Kalluri, R., Muthuswamy, S. K. & Thompson, E. Epithelial-mesenchymal transition. Cancer Res. 68, 9574–9577 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 281.

    Friedman, S. L. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 88, 125–172 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 282.

    Tuchweber, B., Desmouliere, A., Bochaton-Piallat, M. L., Rubbia-Brandt, L. & Gabbiani, G. Proliferation and phenotypic modulation of portal fibroblasts in the early stages of cholestatic fibrosis in the rat. Lab. Invest. 74, 265–278 (1996).

    CAS 

    Google Scholar
     

  • 283.

    Bosselut, N. et al. Distinct proteomic features of two fibrogenic liver cell populations: hepatic stellate cells and portal myofibroblasts. Proteomics 10, 1017–1028 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 284.

    Dudas, J., Mansuroglu, T., Batusic, D. & Ramadori, G. Thy-1 is expressed in myofibroblasts but not found in hepatic stellate cells following liver injury. Histochem. Cell Biol. 131, 115–127 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 285.

    Strieter, R. M., Keeley, E. C., Hughes, M. A., Burdick, M. D. & Mehrad, B. The role of circulating mesenchymal progenitor cells (fibrocytes) in the pathogenesis of pulmonary fibrosis. J. Leukoc. Biol. 86, 1111–1118 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 286.

    Pilling, D., Fan, T., Huang, D., Kaul, B. & Gomer, R. H. Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS ONE 4, e7475 (2009).

    Article 

    Google Scholar
     

  • 287.

    Lin, S. L., Kisseleva, T., Brenner, D. A. & Duffield, J. S. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am. J. Pathol. 173, 1617–1627 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 288.

    Forbes, S. J. et al. A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis. Gastroenterology 126, 955–963 (2004).

    Article 

    Google Scholar
     

  • 289.

    Harting, M. T., Jimenez, F. & Cox, C. S. Jr. Isolation of mesenchymal stem cells (MSCs) from green fluorescent protein positive (GFP+) transgenic rodents: The grass is not always green(er). Stem Cells Dev. 18, 127–135 (2008).

    Article 

    Google Scholar
     

  • 290.

    Wang, Y. et al. TLR4 inhibits mesenchymal stem cell (MSC) STAT3 activation and thereby exerts deleterious effects on MSC-mediated cardioprotection. PLoS ONE 5, e14206 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Source Link

    Related Articles

    Leave a Comment

    This website uses cookies to improve your experience. We will assume you are ok with this, but you can opt-out if you wish. Accept Read More

    %d bloggers like this: