Home Liver DiseasesLiver Cirrhosis Impaired brain function improved by l -carnitine in patients with cirrhosis: evaluation using near-infrared spectroscopy

Impaired brain function improved by l -carnitine in patients with cirrhosis: evaluation using near-infrared spectroscopy

Credits to the Source Link Daniel
Impaired brain function improved by l -carnitine in patients with cirrhosis: evaluation using near-infrared spectroscopy
  • 1.

    Vilstrup, H. et al. Hepatic encephalopathy in chronic liver disease: 2014 Practice Guideline by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver. Hepatology60, 715–735. https://doi.org/10.1002/hep.27210 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • 2.

    Bajaj, J. S., Wade, J. B. & Sanyal, A. J. Spectrum of neurocognitive impairment in cirrhosis: implications for the assessment of hepatic encephalopathy. Hepatology50, 2014–2021. https://doi.org/10.1002/hep.23216 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • 3.

    Montagnese, S., Amodio, P. & Morgan, M. Y. Methods for diagnosing hepatic encephalopathy in patients with cirrhosis: a multidimensional approach. Metab. Brain Dis.19, 281–312. https://doi.org/10.1023/b:mebr.0000043977.11113.2a (2004).

    Article 
    PubMed 

    Google Scholar
     

  • 4.

    Iversen, P. et al. Low cerebral oxygen consumption and blood flow in patients with cirrhosis and an acute episode of hepatic encephalopathy. Gastroenterology136, 863–871 (2009).

    Article 

    Google Scholar
     

  • 5.

    Dam, G. et al. Hepatic encephalopathy is associated with decreased cerebral oxygen metabolism and blood flow, not increased ammonia uptake. Hepatology57, 258–265. https://doi.org/10.1002/hep.25995 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 6.

    Groeneweg, M. et al. Subclinical hepatic encephalopathy impairs daily functioning. Hepatology28, 45–49 (1998).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Marchesini, G. et al. Factors associated with poor health-related quality of life of patients with cirrhosis. Gastroenterology120, 170–178 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Schomerus, H. et al. Latent portasystemic encephalopathy. I. Nature of cerebral functional defects and their effect on fitness to drive. Dig. Dis. Sci.26, 622–630 (1981).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Bajaj, J. S. et al. Navigation skill impairment: another dimension of the driving difficulties in minimal hepatic encephalopathy. Hepatology47, 596–604 (2008).

    Article 

    Google Scholar
     

  • 10.

    Bajaj, J. S., Pinkerton, S. D., Sanyal, A. J. & Heuman, D. M. Diagnosis and treatment of minimal hepatic encephalopathy to prevent motor vehicle accidents: a cost-effectiveness analysis. Hepatology55, 1164–1171. https://doi.org/10.1002/hep.25507 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Wein, C., Koch, H., Popp, B., Oehler, G. & Schauder, P. Minimal hepatic encephalopathy impairs fitness to drive. Hepatology39, 739–745. https://doi.org/10.1002/hep.20095 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • 12.

    Amodio, P. et al. Clinical features and survival of cirrhotic patients with subclinical cognitive alterations detected by the number connection test and computerized psychometric tests. Hepatology29, 1662–1667. https://doi.org/10.1002/hep.510290619 (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 13.

    Ampuero, J. et al. Minimal hepatic encephalopathy and critical flicker frequency are associated with survival of patients with cirrhosis. Gastroenterology149, 1483–1489. https://doi.org/10.1053/j.gastro.2015.07.067 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • 14.

    Hanai, T. et al. Prognostic significance of minimal hepatic encephalopathy in patients with liver cirrhosis in Japan: a propensity score-matching analysis. J. Gastroenterol. Hepatol.34, 1809–1816. https://doi.org/10.1111/jgh.14635 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 15.

    Guerit, J. M. et al. Neurophysiological investigations of hepatic encephalopathy: ISHEN practice guidelines. Liver Int.29, 789–796. https://doi.org/10.1111/j.1478-3231.2009.02030.x (2009).

    Article 
    PubMed 

    Google Scholar
     

  • 16.

    Randolph, C. et al. Neuropsychological assessment of hepatic encephalopathy: ISHEN practice guidelines. Liver Int.29, 629–635. https://doi.org/10.1111/j.1478-3231.2009.02009.x (2009).

    Article 
    PubMed 

    Google Scholar
     

  • 17.

    Bajaj, J. S. et al. Review article: the design of clinical trials in hepatic encephalopathy—an International Society for Hepatic Encephalopathy and Nitrogen Metabolism (ISHEN) consensus statement. Aliment Pharmacol. Ther.33, 739–747. https://doi.org/10.1111/j.1365-2036.2011.04590.x (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Weissenborn, K., Ennen, J. C., Schomerus, H., Ruckert, N. & Hecker, H. Neuropsychological characterization of hepatic encephalopathy. J. Hepatol.34, 768–773 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Dhiman, R. K., Saraswat, V. A., Verma, M. & Naik, S. R. Figure connection test: a universal test for assessment of mental state. J. Gastroenterol. Hepatol.10, 14–23. https://doi.org/10.1111/j.1440-1746.1995.tb01041.x (1995).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 20.

    Kato, A., Watanabe, Y., Sawara, K. & Suzuki, K. Diagnosis of sub-clinical hepatic encephalopathy by neuropsychological tests (NP-tests). Hepatol. Res.38(Suppl 1), S122–S127. https://doi.org/10.1111/j.1872-034X.2008.00437.x (2008).

    Article 
    PubMed 

    Google Scholar
     

  • 21.

    Kawaguchi, T. et al. Updating the neuropsychological test system in Japan for the elderly and in a modern touch screen tablet society by resetting the cut-off values. Hepatol. Res.47, 1335–1339. https://doi.org/10.1111/hepr.12864 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • 22.

    Lauridsen, M. M., Thiele, M., Kimer, N. & Vilstrup, H. The continuous reaction times method for diagnosing, grading, and monitoring minimal/covert hepatic encephalopathy. Metab. Brain Dis.
    https://doi.org/10.1007/s11011-012-9373-z (2013).

    Article 
    PubMed 

    Google Scholar
     

  • 23.

    Kircheis, G., Wettstein, M., Timmermann, L., Schnitzler, A. & Haussinger, D. Critical flicker frequency for quantification of low-grade hepatic encephalopathy. Hepatology35, 357–366 (2002).

    Article 

    Google Scholar
     

  • 24.

    Romero-Gomez, M. et al. Value of the critical flicker frequency in patients with minimal hepatic encephalopathy. Hepatology45, 879–885 (2007).

    Article 

    Google Scholar
     

  • 25.

    Amodio, P. et al. Detection of minimal hepatic encephalopathy: Normalization and optimization of the Psychometric Hepatic Encephalopathy Score. A neuropsychological and quantified EEG study. J. Hepatol.49, 346–353 (2008).

    Article 

    Google Scholar
     

  • 26.

    Davies, M. G. et al. The auditory P300 event-related potential: an objective marker of the encephalopathy of chronic liver disease. Hepatology12, 688–694 (1990).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Kugler, C. F. et al. Visual event-related P300 potentials in early portosystemic encephalopathy. Gastroenterology103, 302–310 (1992).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Bajaj, J. S. et al. Inhibitory control test for the diagnosis of minimal hepatic encephalopathy. Gastroenterology135, 1591-1600 e1591 (2008).

    Article 

    Google Scholar
     

  • 29.

    Sharma, P., Kumar, A., Singh, S. & Tyagi, P. Inhibitory control test, critical flicker frequency, and psychometric tests in the diagnosis of minimal hepatic encephalopathy in cirrhosis. Saudi J. Gastroenterol.19, 40–44. https://doi.org/10.4103/1319-3767.105924 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Goldbecker, A. et al. Comparison of the most favoured methods for the diagnosis of hepatic encephalopathy in liver transplantation candidates. Gut
    https://doi.org/10.1136/gutjnl-2012-303262 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • 31.

    Amodio, P. et al. The EEG assessment of low-grade hepatic encephalopathy: comparison of an artificial neural network-expert system (ANNES) based evaluation with visual EEG readings and EEG spectral analysis. Clin. Neurophysiol.117, 2243–2251 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Maki, A. et al. Spatial and temporal analysis of human motor activity using noninvasive NIR topography. Med. Phys.22, 1997–2005 (1995).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Watanabe, E., Yamashita, Y., Maki, A., Ito, Y. & Koizumi, H. Non-invasive functional mapping with multi-channel near infra-red spectroscopic topography in humans. Neurosci. Lett.205, 41–44. https://doi.org/10.1016/0304-3940(96)12376-4 (1996).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 34.

    Hashem, M., Zhang, Q., Wu, Y., Johnson, T. W. & Dunn, J. F. Using a multimodal near-infrared spectroscopy and MRI to quantify gray matter metabolic rate for oxygen: a hypothermia validation study. Neuroimage
    https://doi.org/10.1016/j.neuroimage.2019.116315 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • 35.

    Suto, T., Fukuda, M., Ito, M., Uehara, T. & Mikuni, M. Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study. Biol. Psychiatry55, 501–511. https://doi.org/10.1016/j.biopsych.2003.09.008 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • 36.

    Cyranoski, D. Neuroscience: thought experiment. Nature469, 148–149. https://doi.org/10.1038/469148a (2011).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 37.

    Nakanishi, H. et al. Impaired brain activity in cirrhotic patients with minimal hepatic encephalopathy: evaluation by near-infrared spectroscopy. Hepatol. Res.44, 319–326. https://doi.org/10.1111/hepr.12127 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 38.

    Abe, K. et al. Reduced frontal activation during verbal fluency task in chronic hepatitis C patients with interferon-based therapy as measured by near-infrared spectroscopy. Hepatol. Res.47, E55–E63. https://doi.org/10.1111/hepr.12721 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 39.

    Takano, T. et al. Astrocyte-mediated control of cerebral blood flow. Nat. Neurosci.9, 260–267. https://doi.org/10.1038/nn1623 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 40.

    Allen, E. A., Pasley, B. N., Duong, T. & Freeman, R. D. Transcranial magnetic stimulation elicits coupled neural and hemodynamic consequences. Science317, 1918–1921. https://doi.org/10.1126/science.1146426 (2007).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 41.

    Gordon, G. R., Choi, H. B., Rungta, R. L., Ellis-Davies, G. C. & MacVicar, B. A. Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature456, 745–749. https://doi.org/10.1038/nature07525 (2008).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Haussinger, D. & Gorg, B. Interaction of oxidative stress, astrocyte swelling and cerebral ammonia toxicity. Curr. Opin. Clin. Nutr. Metab. Care13, 87–92. https://doi.org/10.1097/MCO.0b013e328333b829 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 43.

    Albrecht, J. & Norenberg, M. D. Glutamine: a Trojan horse in ammonia neurotoxicity. Hepatology44, 788–794. https://doi.org/10.1002/hep.21357 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 44.

    Inazu, M. et al. Functional expression of the organic cation/carnitine transporter 2 in rat astrocytes. J. Neurochem.97, 424–434. https://doi.org/10.1111/j.1471-4159.2006.03757.x (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 45.

    Malaguarnera, M. et al. Effects of l-carnitine in patients with hepatic encephalopathy. World J. Gastroenterol.11, 7197–7202 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 46.

    Shiraki, M., Shimizu, M., Moriwaki, H., Okita, K. & Koike, K. Carnitine dynamics and their effects on hyperammonemia in cirrhotic Japanese patients. Hepatol. Res.47, 321–327. https://doi.org/10.1111/hepr.12750 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 47.

    Haussinger, D. & Kircheis, G. Hepatic encephalopathy. Praxis (Bern 1994)91, 957–963 (2002).

    CAS 
    Article 

    Google Scholar
     

  • 48.

    Lemberg, A. & Fernandez, M. A. Hepatic encephalopathy, ammonia, glutamate, glutamine and oxidative stress. Ann. Hepatol.8, 95–102 (2009).

    Article 

    Google Scholar
     

  • 49.

    Iversen, P. et al. Oxidative metabolism of astrocytes is not reduced in hepatic encephalopathy: a PET study with [(11)C]acetate in humans. Front. Neurosci.8, 353. https://doi.org/10.3389/fnins.2014.00353 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Cui, X., Bray, S., Bryant, D. M., Glover, G. H. & Reiss, A. L. A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. Neuroimage54, 2808–2821. https://doi.org/10.1016/j.neuroimage.2010.10.069 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • 51.

    Imperato, A., Ramacci, M. T. & Angelucci, L. Acetyl-l-carnitine enhances acetylcholine release in the striatum and hippocampus of awake freely moving rats. Neurosci. Lett.107, 251–255 (1989).

    CAS 
    Article 

    Google Scholar
     

  • 52.

    Therrien, G., Rose, C., Butterworth, J. & Butterworth, R. F. Protective effect of l-carnitine in ammonia-precipitated encephalopathy in the portacaval shunted rat. Hepatology25, 551–556. https://doi.org/10.1002/hep.510250310 (1997).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 53.

    Nojiri, S. et al.l-carnitine reduces ammonia levels and alleviates covert encephalopathy: a randomized trial. J. Transl. Sci.4, 1–6. https://doi.org/10.15761/JTS.1000220 (2018).

    Article 

    Google Scholar
     

  • 54.

    Saito, M. et al. Serum level of taurine would be associated with the amelioration of minimal hepatic encephalopathy in cirrhotic patients. Hepatol. Res.46, 215–224. https://doi.org/10.1111/hepr.12565 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 55.

    Tajiri, K. et al.l-Carnitine for the treatment of overt hepatic encephalopathy in patients with advanced liver cirrhosis. J. Nutr. Sci. Vitaminol. (Tokyo)64, 321–328. https://doi.org/10.3177/jnsv.64.321 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 56.

    Wang, T. et al.l-carnitine prevents ammonia-induced cytotoxicity and disturbances in intracellular amino acid levels in human astrocytes. J. Gastroenterol. Hepatol.
    https://doi.org/10.1111/jgh.14497 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Bhanji, R. A. et al. Myosteatosis and sarcopenia are associated with hepatic encephalopathy in patients with cirrhosis. Hepatol. Int.12, 377–386. https://doi.org/10.1007/s12072-018-9875-9 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • 58.

    Nishikawa, H. et al. Japan Society of Hepatology guidelines for sarcopenia in liver disease (1st edition): recommendation from the working group for creation of sarcopenia assessment criteria. Hepatol. Res.46, 951–963. https://doi.org/10.1111/hepr.12774 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • 59.

    Kameyama, M. et al. Frontal lobe function in bipolar disorder: a multichannel near-infrared spectroscopy study. Neuroimage29, 172–184 (2006).

    Article 

    Google Scholar
     

  • 60.

    Takizawa, R. et al. Reduced frontopolar activation during verbal fluency task in schizophrenia: a multi-channel near-infrared spectroscopy study. Schizophr. Res.99, 250–262 (2008).

    Article 

    Google Scholar
     

  • Source Link

    Related Articles

    Leave a Comment

    This website uses cookies to improve your experience. We will assume you are ok with this, but you can opt-out if you wish. Accept Read More

    %d bloggers like this: