Home Liver Diseases Hyperglycemia-stimulating diet induces liver steatosis in sheep

Hyperglycemia-stimulating diet induces liver steatosis in sheep

Credits to the Source Link Daniel
Hyperglycemia-stimulating diet induces liver steatosis in sheep
  • 1.

    Alves-Bezerra, M. & Cohen, D. E. Triglyceride metabolism in the liver. Compr. Physiol. 8, 1–8 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Kawano, Y. & Cohen, D. E. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J. Gastroenterol. 48, 434–441 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Cohen, J. C., Horton, J. D. & Hobbs, H. H. Human fatty liver disease: Old questions and new insights. Science 332, 1519–1523 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Fabbrini, E. et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc. Natl. Acad. Sci. 106, 15430–15435 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Tilg, H., Moschen, A. R. & Roden, M. NAFLD and diabetes mellitus. Nat. Rev. Gastroenterol. Hepatol. 14, 32–42 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Mashek, D. G., Khan, S. A., Sathyanarayan, A., Ploeger, J. M. & Franklin, M. P. Hepatic lipid droplet biology: Getting to the root of fatty liver. Hepatology 62, 964–967 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Gan, S. K. & Watts, G. F. Is adipose tissue lipolysis always an adaptive response to starvation?: implications for non-alcoholic fatty liver disease. Clin. Sci. 114, 543–545 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    White, H. The role of TCA cycle anaplerosis in ketosis and fatty liver in periparturient dairy cows. Animals 5, 793–802 (2015).

    PubMed 

    Google Scholar
     

  • 9.

    Herdt, T. H. Ruminant adaptation to negative energy balance. Vet. Clin. N. Am. Food Anim. Pract. 16, 215–230 (2000).

    CAS 

    Google Scholar
     

  • 10.

    Lomonaco, R. et al. Effect of adipose tissue insulin resistance on metabolic parameters and liver histology in obese patients with nonalcoholic fatty liver disease. Hepatology https://doi.org/10.1002/hep.25539 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • 11.

    Holt, H. B. et al. Non-esterified fatty acid concentrations are independently associated with hepatic steatosis in obese subjects. Diabetologia 49, 141–148 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Steiner, J. & Lang, C. Alcohol, adipose tissue and lipid dysregulation. Biomolecules 7, 16 (2017).

    PubMed Central 

    Google Scholar
     

  • 13.

    Donnelly, K. L. et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Investig. 115, 1343–1351 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Vernon, R. G. Lipid metabolism during lactation: A review of adipose tissue-liver interactions and the development of fatty liver. J. Dairy Res. 72, 460–469 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Frise, C. J., Mackillop, L., Joash, K. & Williamson, C. Starvation ketoacidosis in pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 167, 1–7 (2013).

    PubMed 

    Google Scholar
     

  • 16.

    Kalyesubula, M., Rosov, A., Alon, T., Moallem, U. & Dvir, H. Intravenous infusions of glycerol versus propylene glycol for the regulation of negative energy balance in sheep: A randomized trial. Animals 9, 731 (2019).


    Google Scholar
     

  • 17.

    Catunda, A. G. V. et al. Blood leptin, insulin and glucose concentrations in hair sheep raised in a tropical climate. Small Rumin. Res. 114, 272–279 (2013).


    Google Scholar
     

  • 18.

    Gastaldelli, A. et al. Importance of changes in adipose tissue insulin resistance to histological response during thiazolidinedione treatment of patients with nonalcoholic steatohepatitis. Hepatology https://doi.org/10.1002/hep.23116 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • 19.

    Miller, D. W., Bennett, E. J., Harrison, J. L., Findlay, P. A. & Adam, C. L. Adiposity and plane of nutrition influence reproductive neuroendocrine and appetite responses to intracerebroventricular insulin and neuropeptide-Y in sheep. Reprod. Fertil. Dev. 23, 329–338 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Gootwine, E. Meta-analysis of morphometric parameters of late-gestation fetal sheep developed under natural and artificial constraints. J. Anim. Sci. 91, 111–119 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Jones, A. K. et al. Gestational restricted- and over-feeding promote maternal and offspring inflammatory responses that are distinct and dependent on diet in sheep. Biol. Reprod. 98, 184–196 (2018).

    PubMed 

    Google Scholar
     

  • 22.

    Morohoshi, M., Fujisawa, K., Uchimura, I. & Numano, F. Glucose-dependent interleukin 6 and tumor necrosis factor production by human peripheral blood monocytes in vitro. Diabetes 45, 954–959 (1996).

    PubMed 

    Google Scholar
     

  • 23.

    Gregor, M. F. & Hotamisligil, G. S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 29, 415–445 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Shoelson, S. E. Inflammation and insulin resistance. J. Clin. Investig. 116, 1793–1801 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Yost, W. M., Young, J. W., Schmidt, S. P. & McGilliard, A. D. Gluconeogenesis in ruminants: propionic acid production from a high-grain diet fed to cattle. J. Nutr. 107, 2036–2043 (1977).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Baldwin, R. L. & Allison, M. J. Rumen metabolism. J. Anim. Sci. 57, 461–473 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Huang, P. L. A comprehensive definition for metabolic syndrome. Dis. Model. Mech. 2, 231–237 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Helman, R. G., Adams, L. G. & Bridges, C. H. The lesions of hepatic fatty cirrhosis in sheep. Vet. Pathol. 32, 635–640 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Lee, L. et al. Nutritional model of steatohepatitis and metabolic syndrome in the Ossabaw miniature swine. Hepatology 50, 56–67 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    De Brito, G. F., Ponnampalam, E. N. & Hopkins, D. L. The effect of extensive feeding systems on growth rate, carcass traits, and meat quality of finishing lambs. Compr. Rev. Food Sci. Food Saf. 16, 23–38 (2017).


    Google Scholar
     

  • 31.

    Postic, C., Dentin, R., Denechaud, P.-D. & Girard, J. ChREBP, a transcriptional regulator of glucose and lipid metabolism. Annu. Rev. Nutr. 27, 179–192 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Horton, J. D., Goldstein, J. L. & Brown, M. S. SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Investig. https://doi.org/10.1172/JCI0215593 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • 33.

    Armentano, L. E. Ruminant hepatic metabolism of volatile fatty acids, lactate and pyruvate. J. Nutr. https://doi.org/10.1093/jn/122.suppl_3.838 (1992).

    Article 
    PubMed 

    Google Scholar
     

  • 34.

    Brockman, R. P. Effect of insulin on the utilization of propionate in gluconeogenesis in sheep. Br. J. Nutr. 64, 95–101 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Weigand, E., Young, J. W. & McGilliard, A. D. Extent of butyrate metabolism by bovine ruminoreticulum epithelium and the relationship to absorption rate. J. Dairy Sci. 55, 589–597 (1972).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Cook, R. M. & Miller, L. D. Utilization of volatile fatty acids in ruminants I Removal of them from portal blood by the liver. J. Dairy Sci. 48, 1339–1345 (1965).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Petersen, M. C. & Shulman, G. I. Mechanisms of insulin action and insulin resistance. Physiol. Rev. 98, 2133–2223 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Petersen, K. F., Laurent, D., Rothman, D. L., Cline, G. W. & Shulman, G. I. Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans. J. Clin. Investig. https://doi.org/10.1172/JCI579 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • 39.

    Avignon, A. et al. Chronic activation of protein kinase C in soleus muscles and other tissues of insulin-resistant type II diabetic Goto-Kakizaki (GK), obese/aged, and obese/Zucker rats: A mechanism for inhibiting glycogen synthesis. Diabetes https://doi.org/10.2337/diab.45.10.1396 (1996).

    Article 
    PubMed 

    Google Scholar
     

  • 40.

    Ziegler, A., Gonzalez, L. & Blikslager, A. Large animal models: the key to translational discovery in digestive disease research. Cell. Mol. Gastroenterol. Hepatol. 2, 716–724 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Ford, S. P. & Tuersunjiang, N. Maternal obesity: how big an impact does it have on offspring prenatally and during postnatal life?. Expert Rev. Endocrinol. Metab. 8, 261–273 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    del Valle, H. F., Lascano, E. C. & Negroni, J. A. Ischemic preconditioning protection against stunning in conscious diabetic sheep: role of glucose, insulin, sarcolemmal and mitochondrial KATP channels. Cardiovasc. Res. 55, 642–659 (2002).

    PubMed 

    Google Scholar
     

  • 43.

    Gootwine, E., Reicher, S. & Rozov, A. Prolificacy and lamb survival at birth in Awassi and Assaf sheep carrying the FecB (Booroola) mutation. Anim. Reprod. Sci. 108, 402–411 (2008).

    PubMed 

    Google Scholar
     

  • 44.

    Pichler, M. et al. Thresholds of whole-blood β-hydroxybutyrate and glucose concentrations measured with an electronic hand-held device to identify ovine hyperketonemia. J. Dairy Sci. 97, 1388–1399 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Kenyon, P. R., Maloney, S. K. & Blache, D. Review of sheep body condition score in relation to production characteristics. N. Z. J. Agric. Res. 57, 38–64 (2014).


    Google Scholar
     

  • 46.

    Chalasani, N. et al. The diagnosis and management of non-alcoholic fatty liver disease: Practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 55, 2005–2023 (2012).

    PubMed 

    Google Scholar
     

  • 47.

    Petäjä, E. & Yki-Järvinen, H. Definitions of Normal liver fat and the association of insulin sensitivity with acquired and genetic NAFLD—a systematic review. Int. J. Mol. Sci. 17, 633 (2016).

    PubMed Central 

    Google Scholar
     

  • 48.

    Hoyumpa, A. M., Greene, H. L., Dunn, G. D. & Schenker, S. Fatty liver: biochemical and clinical considerations. Am. J. Dig. Dis. 20, 1142–1170 (1975).

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Folch, J., Lees, M. & Stanley, G. H. S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957).

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Kleiner, D. E. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 1313–1321 (2005).

    PubMed 

    Google Scholar
     

  • 52.

    Roe, J. H., Bailey, J. M., Gray, R. R. & Robinson, J. N. Complete removal of glycogen from tissues by extraction with cold trichloroacetic acid solution. J. Biol. Chem. 236, 1244–1246 (1961).

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Burns, C. et al. Proposal to initiate a project to evaluate a candidate International Standard for Human Recombinant Insulin. (2010).

  • 54.

    Reimers, T. J., Cowan, R. G., McCann, J. P. & Ross, M. W. Validation of a rapid solid-phase radioimmunoassay for canine, bovine, and equine insulin. Am. J. Vet. Res. 43, 1274–1278 (1982).

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    McCann, J. P., Ullmann, M. B., Temple, M. R., Reimers, T. J. & Bergman, E. N. Insulin and glucose responses to glucose injection in fed and fasted obese and lean sheep. J. Nutr. 116, 1287–1297 (1986).

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real- time quantitative PCR and the 2(-Delta Delta C (T)) method. Methods 408, 402–408 (2001).


    Google Scholar
     

  • 57.

    Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Source Link

    Related Articles

    Leave a Comment

    This website uses cookies to improve your experience. We will assume you are ok with this, but you can opt-out if you wish. Accept Read More

    %d bloggers like this: