Home Journals Hepatokines and adipokines in NASH-related hepatocellular carcinoma

Hepatokines and adipokines in NASH-related hepatocellular carcinoma

Credits to the Source Link Daniel
Hepatokines and adipokines in NASH-related hepatocellular carcinoma
    • Chalasani N.
    • Younossi Z.
    • Lavine J.E.
    • Charlton M.
    • Cusi K.
    • Rinella M.
    • et al.

    The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases.

    Hepatology. 2018; 67: 328-357https://doi.org/10.1002/hep.29367

    • Ryerson A.B.
    • Eheman C.R.
    • Altekruse S.F.
    • Ward J.W.
    • Jemal A.
    • Sherman R.L.
    • et al.

    Annual Report to the Nation on the Status of Cancer, 1975-2012, featuring the increasing incidence of liver cancer.

    Cancer. 2016; 122: 1312-1337https://doi.org/10.1002/cncr.29936

    • Younossi Z.M.
    • Koenig A.B.
    • Abdelatif D.
    • Fazel Y.
    • Henry L.
    • Wymer M.

    Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes.

    Hepatology. 2016; 64: 73-84https://doi.org/10.1002/hep.28431

    • Ghouri Y.A.
    • Mian I.
    • Rowe J.H.

    Review of hepatocellular carcinoma: Epidemiology, etiology, and carcinogenesis.

    J Carcinog. 2017; 16: 1https://doi.org/10.4103/jcar.JCar_9_16

  • Fibrosis-dependent mechanisms of hepatocarcinogenesis.

    Hepatology. 2012; 56: 769-775https://doi.org/10.1002/hep.25670

  • Mezale D, Strumfa I, Vanags A, Mezals,Matiss ; Fridrihsone,Ilze ; Strumfs,Boriss ; Balodis,Dainis. Non-Alcoholic Steatohepatitis, Liver Cirrhosis and Hepatocellular Carcinoma: The Molecular Pathways | IntechOpen. Liver Cirrhosis, 2018. https://doi.org/10.5772/intechopen.68771.

    • Stine J.G.
    • Wentworth B.J.
    • Zimmet A.
    • Rinella M.E.
    • Loomba R.
    • Caldwell S.H.
    • et al.

    Systematic review with meta-analysis: risk of hepatocellular carcinoma in non-alcoholic steatohepatitis without cirrhosis compared to other liver diseases.

    Aliment Pharmacol Ther. 2018; 48: 696-703https://doi.org/10.1111/apt.14937

    • Nakagawa S.
    • Wei L.
    • Song W.M.
    • Higashi T.
    • Ghoshal S.
    • Kim R.S.
    • et al.

    Molecular Liver Cancer Prevention in Cirrhosis by Organ Transcriptome Analysis and Lysophosphatidic Acid Pathway Inhibition.

    Cancer Cell. 2016; 30: 879-890https://doi.org/10.1016/j.ccell.2016.11.004

    • Ertle J.
    • Dechêne A.
    • Sowa J.-P.
    • Penndorf V.
    • Herzer K.
    • Kaiser G.
    • et al.

    Non-alcoholic fatty liver disease progresses to hepatocellular carcinoma in the absence of apparent cirrhosis.

    Int J Cancer. 2011; 128: 2436-2443https://doi.org/10.1002/ijc.25797

    • Mittal S.
    • El-Serag H.B.
    • Sada Y.H.
    • Kanwal F.
    • Duan Z.
    • Temple S.
    • et al.

    Hepatocellular Carcinoma in the Absence of Cirrhosis in United States Veterans is Associated With Nonalcoholic Fatty Liver Disease.

    Clin Gastroenterol Hepatol. 2016; 14 (): 124-131https://doi.org/10.1016/j.cgh.2015.07.019

    • Kimura T.
    • Kobayashi A.
    • Tanaka N.
    • Sano K.
    • Komatsu M.
    • Fujimori N.
    • et al.

    Clinicopathological characteristics of non-B non-C hepatocellular carcinoma without past hepatitis B virus infection.

    Hepatol Res. 2017; 47: 405-418https://doi.org/10.1111/hepr.12762

    • Canbay A.
    • Kachru N.
    • Haas J.S.
    • Sowa J.-P.
    • Meise D.
    • Ozbay A.B.

    Patterns and predictors of mortality and disease progression among patients with non-alcoholic fatty liver disease.

    Alimentary Pharmacology & Therapeutics. 2020; 52: 1185-1194https://doi.org/10.1111/apt.16016

    • Cholankeril G.
    • Patel R.
    • Khurana S.
    • Satapathy S.K.

    Hepatocellular carcinoma in non-alcoholic steatohepatitis: Current knowledge and implications for management.

    World J Hepatol. 2017; 9: 533-543https://doi.org/10.4254/wjh.v9.i11.533

    • Perumpail R.B.
    • Liu A.
    • Wong R.J.
    • Ahmed A.
    • Harrison S.A.

    Pathogenesis of hepatocarcinogenesis in non-cirrhotic nonalcoholic fatty liver disease: Potential mechanistic pathways.

    World Journal of Hepatology. 2015; 7: 2384-2388https://doi.org/10.4254/wjh.v7.i22.2384

    • Best J.
    • Bechmann L.P.
    • Sowa J.-P.
    • Sydor S.
    • Dechêne A.
    • Pflanz K.
    • et al.

    GALAD Score Detects Early Hepatocellular Carcinoma in an International Cohort of Patients With Nonalcoholic Steatohepatitis.

    Clin Gastroenterol Hepatol. 2020; 18 (): 728-735https://doi.org/10.1016/j.cgh.2019.11.012

  • The Obesity Epidemic–Understanding the Disease and the Treatment.

    N Engl J Med. 2016; 374: 177-179https://doi.org/10.1056/NEJMe1514957

    • Polyzos S.A.
    • Kountouras J.
    • Mantzoros C.S.

    Adipose tissue, obesity and non-alcoholic fatty liver disease.

    Minerva Endocrinol. 2017; 42: 92-108https://doi.org/10.23736/S0391-1977.16.02563-3

    • Paradis V.
    • Zalinski S.
    • Chelbi E.
    • Guedj N.
    • Degos F.
    • Vilgrain V.
    • et al.

    Hepatocellular carcinomas in patients with metabolic syndrome often develop without significant liver fibrosis: a pathological analysis.

    Hepatology. 2009; 49: 851-859https://doi.org/10.1002/hep.22734

    • Viganò L.
    • Conci S.
    • Cescon M.
    • Fava C.
    • Capelli P.
    • D’Errico A.
    • et al.

    Liver resection for hepatocellular carcinoma in patients with metabolic syndrome: A multicenter matched analysis with HCV-related HCC.

    J Hepatol. 2015; 63: 93-101https://doi.org/10.1016/j.jhep.2015.01.024

    • Cauchy F.
    • Zalinski S.
    • Dokmak S.
    • Fuks D.
    • Farges O.
    • Castera L.
    • et al.

    Surgical treatment of hepatocellular carcinoma associated with the metabolic syndrome.

    Br J Surg. 2013; 100: 113-121https://doi.org/10.1002/bjs.8963

    • Farges O.
    • Ferreira N.
    • Dokmak S.
    • Belghiti J.
    • Bedossa P.
    • Paradis V.

    Changing trends in malignant transformation of hepatocellular adenoma.

    Gut. 2011; 60: 85-89https://doi.org/10.1136/gut.2010.222109

    • Guzman G.
    • Brunt E.M.
    • Petrovic L.M.
    • Chejfec G.
    • Layden T.J.
    • Cotler S.J.

    Does nonalcoholic fatty liver disease predispose patients to hepatocellular carcinoma in the absence of cirrhosis?.

    Arch Pathol Lab Med. 2008; 132: 1761-1766https://doi.org/10.1043/1543-2165-132.11.1761

    • Starley B.Q.
    • Calcagno C.J.
    • Harrison S.A.

    Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection.

    Hepatology. 2010; 51: 1820-1832https://doi.org/10.1002/hep.23594

    • Shin E.
    • Yu Y.-D.
    • Kim D.-S.
    • Won N.H.

    Adiponectin receptor expression predicts favorable prognosis in cases of hepatocellular carcinoma.

    Pathol Oncol Res. 2014; 20: 667-675https://doi.org/10.1007/s12253-014-9747-0

    • Watanabe N.
    • Takai K.
    • Imai K.
    • Shimizu M.
    • Naiki T.
    • Nagaki M.
    • et al.

    Increased levels of serum leptin are a risk factor for the recurrence of stage I/II hepatocellular carcinoma after curative treatment.

    J Clin Biochem Nutr. 2011; 49: 153-158https://doi.org/10.3164/jcbn.10-149

    • Shen C.
    • Zhao C.-Y.
    • Zhang R.
    • Qiao L.

    Obesity-related hepatocellular carcinoma: roles of risk factors altered in obesity.

    Front Biosci (Landmark Ed). 2012; 17: 2356-2370

    • Ringseis R.
    • Eder K.
    • Mooren F.C.
    • Krüger K.

    Metabolic signals and innate immune activation in obesity and exercise.

    Exerc Immunol Rev. 2015; 21: 58-68

    • Wen H.
    • Gris D.
    • Lei Y.
    • Jha S.
    • Zhang L.
    • Huang M.T.-H.
    • et al.

    Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling.

    Nat Immunol. 2011; 12: 408-415https://doi.org/10.1038/ni.2022

    • Handelsman Y.
    • Leroith D.
    • Bloomgarden Z.T.
    • Dagogo-Jack S.
    • Einhorn D.
    • Garber A.J.
    • et al.

    Diabetes and cancer–an AACE/ACE consensus statement.

    Endocr Pract. 2013; 19: 675-693https://doi.org/10.4158/EP13248.CS

    • Jialal I.
    • Kaur H.
    • Devaraj S.

    Toll-like receptor status in obesity and metabolic syndrome: a translational perspective.

    J Clin Endocrinol Metab. 2014; 99: 39-48https://doi.org/10.1210/jc.2013-3092

  • Adipocyte-Macrophage Cross-Talk in Obesity.

    Adv Exp Med Biol. 2017; 960: 327-343https://doi.org/10.1007/978-3-319-48382-5_14

  • CEACAM1 loss links inflammation to insulin resistance in obesity and non-alcoholic steatohepatitis (NASH).

    Semin Immunopathol. 2014; 36: 55-71https://doi.org/10.1007/s00281-013-0407-3

  • Insulin resistance and insulin hypersecretion in the metabolic syndrome and type 2 diabetes: Time for a conceptual framework shift.

    Diab Vasc Dis Res. 2019; 16: 118-127https://doi.org/10.1177/1479164119827611

    • Arcopinto M.
    • Schiavo A.
    • Salzano A.
    • Bossone E.
    • D’Assante R.
    • Marsico F.
    • et al.

    Metabolic Syndrome in Heart Failure: Friend or Foe?.

    Heart Failure Clinics. 2019; 15: 349-358https://doi.org/10.1016/j.hfc.2019.02.004

    • Tagi V.M.
    • Giannini C.
    • Chiarelli F.

    Insulin Resistance in Children.

    Front Endocrinol (Lausanne). 2019; 10: 342https://doi.org/10.3389/fendo.2019.00342

    • Marchisello S.
    • Di Pino A.
    • Scicali R.
    • Urbano F.
    • Piro S.
    • Purrello F.
    • et al.

    Pathophysiological, Molecular and Therapeutic Issues of Nonalcoholic Fatty Liver Disease: An Overview.

    Int J Mol Sci. 2019; 20https://doi.org/10.3390/ijms20081948

    • Valenti L.
    • Bugianesi E.
    • Pajvani U.
    • Targher G.

    Nonalcoholic fatty liver disease: cause or consequence of type 2 diabetes?.

    Liver Int. 2016; 36: 1563-1579https://doi.org/10.1111/liv.13185

    • Li Y.
    • Wang J.
    • Tang Y.
    • Han X.
    • Liu B.
    • Hu H.
    • et al.

    Bidirectional association between nonalcoholic fatty liver disease and type 2 diabetes in Chinese population: Evidence from the Dongfeng-Tongji cohort study.

    PLoS One. 2017; 12https://doi.org/10.1371/journal.pone.0174291

    • Davila J.A.
    • Morgan R.O.
    • Shaib Y.
    • McGlynn K.A.
    • El-Serag H.B.

    Diabetes increases the risk of hepatocellular carcinoma in the United States: a population based case control study.

    Gut. 2005; 54: 533-539https://doi.org/10.1136/gut.2004.052167

  • Type 2 diabetes mellitus and risk of hepatocellular carcinoma: spotlight on nonalcoholic fatty liver disease.

    Ann Transl Med. 2017; 5https://doi.org/10.21037/atm.2017.04.41

    • Kim J.H.
    • Sinn D.H.
    • Gwak G.-Y.
    • Kang W.
    • Paik Y.-H.
    • Choi M.S.
    • et al.

    Insulin resistance and the risk of hepatocellular carcinoma in chronic hepatitis B patients.

    J Gastroenterol Hepatol. 2017; 32: 1100-1106https://doi.org/10.1111/jgh.13647

  • The role of hepatokines in metabolism.

    Nat Rev Endocrinol. 2013; 9: 144-152https://doi.org/10.1038/nrendo.2012.258

    • Iroz A.
    • Couty J.-P.
    • Postic C.

    Hepatokines: unlocking the multi-organ network in metabolic diseases.

    Diabetologia. 2015; 58: 1699-1703https://doi.org/10.1007/s00125-015-3634-4

    • Meex R.C.
    • Hoy A.J.
    • Morris A.
    • Brown R.D.
    • Lo J.C.Y.
    • Burke M.
    • et al.

    Fetuin B Is a Secreted Hepatocyte Factor Linking Steatosis to Impaired Glucose Metabolism.

    Cell Metabolism. 2015; 22: 1078-1089https://doi.org/10.1016/j.cmet.2015.09.023

  • Hepatokines: linking nonalcoholic fatty liver disease and insulin resistance.

    Nat Rev Endocrinol. 2017; 13: 509-520https://doi.org/10.1038/nrendo.2017.56

    • Adolph T.E.
    • Grander C.
    • Grabherr F.
    • Tilg H.

    Adipokines and Non-Alcoholic Fatty Liver Disease: Multiple Interactions.

    Int J Mol Sci. 2017; 18https://doi.org/10.3390/ijms18081649

    • Carbone C.
    • Piro G.
    • Merz V.
    • Simionato F.
    • Santoro R.
    • Zecchetto C.
    • et al.

    Angiopoietin-Like Proteins in Angiogenesis, Inflammation and Cancer.

    Int J Mol Sci. 2018; 19https://doi.org/10.3390/ijms19020431

  • Regulation of lipid metabolism by angiopoietin-like proteins.

    Curr Opin Lipidol. 2016; 27: 249-256https://doi.org/10.1097/MOL.0000000000000290

    • Cinkajzlová A.
    • Mráz M.
    • Lacinová Z.
    • Kloučková J.
    • Kaválková P.
    • Kratochvílová H.
    • et al.

    Angiopoietin-like protein 3 and 4 in obesity, type 2 diabetes mellitus, and malnutrition: the effect of weight reduction and realimentation.

    Nutr Diabetes. 2018; 8: 21https://doi.org/10.1038/s41387-018-0032-2

    • Mandard S.
    • Zandbergen F.
    • van Straten E.
    • Wahli W.
    • Kuipers F.
    • Müller M.
    • et al.

    The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity.

    J Biol Chem. 2006; 281: 934-944https://doi.org/10.1074/jbc.M506519200

    • Oike Y.
    • Akao M.
    • Yasunaga K.
    • Yamauchi T.
    • Morisada T.
    • Ito Y.
    • et al.

    Angiopoietin-related growth factor antagonizes obesity and insulin resistance.

    Nat Med. 2005; 11: 400-408https://doi.org/10.1038/nm1214

    • Ebert T.
    • Bachmann A.
    • Lössner U.
    • Kratzsch J.
    • Blüher M.
    • Stumvoll M.
    • et al.

    Serum levels of angiopoietin-related growth factor in diabetes mellitus and chronic hemodialysis.

    Metab Clin Exp. 2009; 58: 547-551https://doi.org/10.1016/j.metabol.2008.11.016

    • Daneshzad E.
    • Farsad-Naeimi A.
    • Heshmati J.
    • Mirzaei K.
    • Maghbooli Z.
    • Keshavarz S.-A.

    The association between dietary antioxidants and adipokines level among obese women.

    Diabetes Metab Syndr. 2019; 13: 1369-1373https://doi.org/10.1016/j.dsx.2019.02.022

    • Dong X.-Y.
    • Pang X.-W.
    • Yu S.-T.
    • Su Y.-R.
    • Wang H.-C.
    • Yin Y.-H.
    • et al.

    Identification of genes differentially expressed in human hepatocellular carcinoma by a modified suppression subtractive hybridization method.

    Int J Cancer. 2004; 112: 239-248https://doi.org/10.1002/ijc.20363

    • Wang C.
    • Tong Y.
    • Wen Y.
    • Cai J.
    • Guo H.
    • Huang L.
    • et al.

    Hepatocellular Carcinoma-Associated Protein TD26 Interacts and Enhances Sterol Regulatory Element-Binding Protein 1 Activity to Promote Tumor Cell Proliferation and Growth.

    Hepatology. 2018; 68: 1833-1850https://doi.org/10.1002/hep.30030

    • von Loeffelholz C.
    • Pfeiffer A.F.H.
    • Lock J.F.
    • Lieske S.
    • Döcke S.
    • Murahovschi V.
    • et al.

    ANGPTL8 (Betatrophin) is Expressed in Visceral Adipose Tissue and Relates to Human Hepatic Steatosis in Two Independent Clinical Collectives.

    Horm Metab Res. 2017; 49: 343-349https://doi.org/10.1055/s-0043-102950

    • Xu J.
    • Lin Y.
    • Zhou H.
    • Zhao L.
    • Xiang G.

    The Correlation Between Circulating Betatrophin and Insulin Resistance in General Population: A Meta-Analysis.

    Horm Metab Res. 2017; 49: 760-771https://doi.org/10.1055/s-0043-108911

    • Yin Y.
    • Ding X.
    • Peng L.
    • Hou Y.
    • Ling Y.
    • Gu M.
    • et al.

    Increased Serum ANGPTL8 Concentrations in Patients with Prediabetes and Type 2 Diabetes.

    J Diabetes Res. 2017; 2017: 8293207https://doi.org/10.1155/2017/8293207

    • Wang S.
    • Hong X.
    • Tu Z.
    • Yuan G.

    Angiopoietin-like protein 8: An attractive biomarker for the evaluation of subjects with insulin resistance and related disorders.

    Diabetes Research and Clinical Practice. 2017; 133: 168-177https://doi.org/10.1016/j.diabres.2017.08.025

    • Kovrov O.
    • Kristensen K.K.
    • Larsson E.
    • Ploug M.
    • Olivecrona G.

    On the mechanism of angiopoietin-like protein 8 for control of lipoprotein lipase activity.

    J Lipid Res. 2019; 60: 783-793https://doi.org/10.1194/jlr.M088807

    • Fu Z.
    • Yao F.
    • Abou-Samra A.B.
    • Zhang R.

    Lipasin, thermoregulated in brown fat, is a novel but atypical member of the angiopoietin-like protein family.

    Biochem Biophys Res Commun. 2013; 430: 1126-1131https://doi.org/10.1016/j.bbrc.2012.12.025

    • Wang H.
    • Lai Y.
    • Han C.
    • Liu A.
    • Fan C.
    • Wang H.
    • et al.

    The Effects of Serum ANGPTL8/betatrophin on the Risk of Developing the Metabolic Syndrome – A Prospective Study.

    Scientific Reports. 2016; 6: 28431https://doi.org/10.1038/srep28431

    • Chen H.-A.
    • Kuo T.-C.
    • Tseng C.-F.
    • Ma J.-T.
    • Yang S.-T.
    • Yen C.-J.
    • et al.

    Angiopoietin-like protein 1 antagonizes MET receptor activity to repress sorafenib resistance and cancer stemness in hepatocellular carcinoma.

    Hepatology. 2016; 64: 1637-1651https://doi.org/10.1002/hep.28773

    • Gao L.
    • Ge C.
    • Fang T.
    • Zhao F.
    • Chen T.
    • Yao M.
    • et al.

    ANGPTL2 promotes tumor metastasis in hepatocellular carcinoma.

    J Gastroenterol Hepatol. 2015; 30: 396-404https://doi.org/10.1111/jgh.12702

    • Ng K.T.-P.
    • Xu A.
    • Cheng Q.
    • Guo D.Y.
    • Lim Z.X.-H.
    • Sun C.K.-W.
    • et al.

    Clinical relevance and therapeutic potential of angiopoietin-like protein 4 in hepatocellular carcinoma.

    Mol Cancer. 2014; 13: 196https://doi.org/10.1186/1476-4598-13-196

    • von Loeffelholz C.
    • Horn P.
    • Birkenfeld A.L.
    • Claus R.A.
    • Metzing B.U.
    • Döcke S.
    • et al.

    Fetuin A is a Predictor of Liver Fat in Preoperative Patients with Nonalcoholic Fatty Liver Disease.

    J Invest Surg. 2016; 29: 266-274https://doi.org/10.3109/08941939.2016.1149640

    • Huang Y.
    • Huang X.
    • Ding L.
    • Wang P.
    • Peng K.
    • Chen Y.
    • et al.

    Serum Fetuin-A Associated With Fatty Liver Index, Early Indicator of Nonalcoholic Fatty Liver Disease: A Strobe-Compliant Article.

    Medicine (Baltimore). 2015; 94: e1517https://doi.org/10.1097/MD.0000000000001517

    • Kahraman A.
    • Sowa J.-P.
    • Schlattjan M.
    • Sydor S.
    • Pronadl M.
    • Wree A.
    • et al.

    Fetuin-A mRNA expression is elevated in NASH compared with NAFL patients.

    Clin Sci. 2013; 125: 391-400https://doi.org/10.1042/CS20120542

    • Peter A.
    • Kovarova M.
    • Staiger H.
    • Machann J.
    • Schick F.
    • Königsrainer A.
    • et al.

    The hepatokines fetuin-A and fetuin-B are upregulated in the state of hepatic steatosis and may differently impact on glucose homeostasis in humans.

    Am J Physiol Endocrinol Metab. 2018; 314: E266-E273https://doi.org/10.1152/ajpendo.00262.2017

  • Iroz A, Couty J-P, Postic C. Hepatokines: unlocking the multi-organ network in metabolic diseases. Diabetologia 2015;58:1699–703. https://doi.org/10.1007/s00125-015-3634-4.

    • Pal D.
    • Dasgupta S.
    • Kundu R.
    • Maitra S.
    • Das G.
    • Mukhopadhyay S.
    • et al.

    Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance.

    Nature Medicine. 2012; 18: 1279-1285https://doi.org/10.1038/nm.2851

    • Lonardo A.
    • Lugari S.
    • Ballestri S.
    • Nascimbeni F.
    • Baldelli E.
    • Maurantonio M.

    A round trip from nonalcoholic fatty liver disease to diabetes: molecular targets to the rescue?.

    Acta Diabetol. 2019; 56: 385-396https://doi.org/10.1007/s00592-018-1266-0

    • Best J.D.
    • Kahn S.E.
    • Ader M.
    • Watanabe R.M.
    • Ni T.C.
    • Bergman R.N.

    Role of glucose effectiveness in the determination of glucose tolerance.

    Diabetes Care. 1996; 19: 1018-1030https://doi.org/10.2337/diacare.19.9.1018

    • Šeda O.
    • Cahová M.
    • Míková I.
    • Šedová L.
    • Daňková H.
    • Heczková M.
    • et al.

    Hepatic Gene Expression Profiles Differentiate Steatotic and Non-steatotic Grafts in Liver Transplant Recipients.

    Front Endocrinol (Lausanne). 2019; 10https://doi.org/10.3389/fendo.2019.00270

    • Zhou W.
    • Yang J.
    • Zhu J.
    • Wang Y.
    • Wu Y.
    • Xu L.
    • et al.

    Fetuin B aggravates liver X receptor-mediated hepatic steatosis through AMPK in HepG2 cells and mice.

    Am J Transl Res. 2019; 11: 1498-1509

    • Sato M.
    • Kamada Y.
    • Takeda Y.
    • Kida S.
    • Ohara Y.
    • Fujii H.
    • et al.

    Fetuin-A negatively correlates with liver and vascular fibrosis in nonalcoholic fatty liver disease subjects.

    Liver Int. 2015; 35: 925-935https://doi.org/10.1111/liv.12478

    • Ebert T.
    • Linder N.
    • Schaudinn A.
    • Busse H.
    • Berger J.
    • Lichtinghagen R.
    • et al.

    Association of fetuin B with markers of liver fibrosis in nonalcoholic fatty liver disease.

    Endocrine. 2017; 58: 246-252https://doi.org/10.1007/s12020-017-1417-z

    • Aleksandrova K.
    • Boeing H.
    • Nöthlings U.
    • Jenab M.
    • Fedirko V.
    • Kaaks R.
    • et al.

    Inflammatory and metabolic biomarkers and risk of liver and biliary tract cancer.

    Hepatology. 2014; 60: 858-871https://doi.org/10.1002/hep.27016

    • Nies V.J.M.
    • Sancar G.
    • Liu W.
    • van Zutphen T.
    • Struik D.
    • Yu R.T.
    • et al.

    Fibroblast Growth Factor Signaling in Metabolic Regulation.

    Front Endocrinol (Lausanne). 2015; 6: 193https://doi.org/10.3389/fendo.2015.00193

  • The Fibroblast Growth Factor signaling pathway.

    Wiley Interdiscip Rev Dev Biol. 2015; 4: 215-266https://doi.org/10.1002/wdev.176

    • Wilkie A.O.
    • Morriss-Kay G.M.
    • Jones E.Y.
    • Heath J.K.

    Functions of fibroblast growth factors and their receptors.

    Curr Biol. 1995; 5: 500-507https://doi.org/10.1016/s0960-9822(95)00102-3

  • Regulation of Hepatic Stellate Cells and Fibrogenesis by Fibroblast Growth Factors.

    Biomed Res Int. 2016; 2016: 8323747https://doi.org/10.1155/2016/8323747

    • Goetz R.
    • Beenken A.
    • Ibrahimi O.A.
    • Kalinina J.
    • Olsen S.K.
    • Eliseenkova A.V.
    • et al.

    Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members.

    Mol Cell Biol. 2007; 27: 3417-3428https://doi.org/10.1128/MCB.02249-06

    • Wang J.-N.
    • Li L.
    • Li L.-Y.
    • Yan Q.
    • Li J.
    • Xu T.

    Emerging role and therapeutic implication of Wnt signaling pathways in liver fibrosis.

    Gene. 2018; 674: 57-69https://doi.org/10.1016/j.gene.2018.06.053

    • Mejhert N.
    • Galitzky J.
    • Pettersson A.T.
    • Bambace C.
    • Blomqvist L.
    • Bouloumié A.
    • et al.

    Mapping of the fibroblast growth factors in human white adipose tissue.

    J Clin Endocrinol Metab. 2010; 95: 2451-2457https://doi.org/10.1210/jc.2009-2049

    • Dailey L.
    • Ambrosetti D.
    • Mansukhani A.
    • Basilico C.

    Mechanisms underlying differential responses to FGF signaling.

    Cytokine Growth Factor Rev. 2005; 16: 233-247https://doi.org/10.1016/j.cytogfr.2005.01.007

    • Jin-no K.
    • Tanimizu M.
    • Hyodo I.
    • Kurimoto F.
    • Yamashita T.

    Plasma level of basic fibroblast growth factor increases with progression of chronic liver disease.

    J Gastroenterol. 1997; 32: 119-121

    • Luo Y.
    • Yang C.
    • Lu W.
    • Xie R.
    • Jin C.
    • Huang P.
    • et al.

    Metabolic Regulator βKlotho Interacts with Fibroblast Growth Factor Receptor 4 (FGFR4) to Induce Apoptosis and Inhibit Tumor Cell Proliferation.

    J Biol Chem. 2010; 285: 30069-30078https://doi.org/10.1074/jbc.M110.148288

    • Kurosu H.
    • Choi M.
    • Ogawa Y.
    • Dickson A.S.
    • Goetz R.
    • Eliseenkova A.V.
    • et al.

    Tissue-specific Expression of βKlotho and Fibroblast Growth Factor (FGF) Receptor Isoforms Determines Metabolic Activity of FGF19 and FGF21.

    J Biol Chem. 2007; 282: 26687-26695https://doi.org/10.1074/jbc.M704165200

    • Kan M.
    • Wu X.
    • Wang F.
    • McKeehan W.L.

    Specificity for Fibroblast Growth Factors Determined by Heparan Sulfate in a Binary Complex with the Receptor Kinase.

    J Biol Chem. 1999; 274: 15947-15952https://doi.org/10.1074/jbc.274.22.15947

    • Bechmann L.P.
    • Kocabayoglu P.
    • Sowa J.-P.
    • Sydor S.
    • Best J.
    • Schlattjan M.
    • et al.

    Free fatty acids repress small heterodimer partner (SHP) activation and adiponectin counteracts bile acid-induced liver injury in superobese patients with nonalcoholic steatohepatitis.

    Hepatology. 2013; 57: 1394-1406https://doi.org/10.1002/hep.26225

    • Jiao N.
    • Baker S.S.
    • Chapa-Rodriguez A.
    • Liu W.
    • Nugent C.A.
    • Tsompana M.
    • et al.

    Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD.

    Gut. 2018; 67: 1881-1891https://doi.org/10.1136/gutjnl-2017-314307

    • Li Y.
    • Zhang W.
    • Doughtie A.
    • Cui G.
    • Li X.
    • Pandit H.
    • et al.

    Up-regulation of fibroblast growth factor 19 and its receptor associates with progression from fatty liver to hepatocellular carcinoma.

    Oncotarget. 2016; 7: 52329-52339https://doi.org/10.18632/oncotarget.10750

    • Harrison S.A.
    • Rinella M.E.
    • Abdelmalek M.F.
    • Trotter J.F.
    • Paredes A.H.
    • Arnold H.L.
    • et al.

    NGM282 for treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial.

    Lancet. 2018; 391: 1174-1185https://doi.org/10.1016/S0140-6736(18)30474-4

    • Sheu M.-J.
    • Hsieh M.-J.
    • Chiang W.-L.
    • Yang S.-F.
    • Lee H.-L.
    • Lee L.-M.
    • et al.

    Fibroblast growth factor receptor 4 polymorphism is associated with liver cirrhosis in hepatocarcinoma.

    PLoS ONE. 2015; 10e0122961https://doi.org/10.1371/journal.pone.0122961

    • Hyeon J.
    • Ahn S.
    • Lee J.J.
    • Song D.H.
    • Park C.-K.

    Expression of fibroblast growth factor 19 is associated with recurrence and poor prognosis of hepatocellular carcinoma.

    Dig Dis Sci. 2013; 58: 1916-1922https://doi.org/10.1007/s10620-013-2609-x

    • Miura S.
    • Mitsuhashi N.
    • Shimizu H.
    • Kimura F.
    • Yoshidome H.
    • Otsuka M.
    • et al.

    Fibroblast growth factor 19 expression correlates with tumor progression and poorer prognosis of hepatocellular carcinoma.

    BMC Cancer. 2012; 12: 56https://doi.org/10.1186/1471-2407-12-56

    • Sydor S.
    • Best J.
    • Messerschmidt I.
    • Manka P.
    • Vilchez-Vargas R.
    • Brodesser S.
    • et al.

    Altered Microbiota Diversity and Bile Acid Signaling in Cirrhotic and Noncirrhotic NASH-HCC.

    Clin Transl Gastroenterol. 2020; 11https://doi.org/10.14309/ctg.0000000000000131

    • Coskun T.
    • Bina H.A.
    • Schneider M.A.
    • Dunbar J.D.
    • Hu C.C.
    • Chen Y.
    • et al.

    Fibroblast growth factor 21 corrects obesity in mice.

    Endocrinology. 2008; 149: 6018-6027https://doi.org/10.1210/en.2008-0816

    • Xu J.
    • Lloyd D.J.
    • Hale C.
    • Stanislaus S.
    • Chen M.
    • Sivits G.
    • et al.

    Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice.

    Diabetes. 2009; 58: 250-259https://doi.org/10.2337/db08-0392

    • Zhang X.
    • Yeung D.C.Y.
    • Karpisek M.
    • Stejskal D.
    • Zhou Z.-G.
    • Liu F.
    • et al.

    Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans.

    Diabetes. 2008; 57: 1246-1253https://doi.org/10.2337/db07-1476

    • Li H.
    • Fang Q.
    • Gao F.
    • Fan J.
    • Zhou J.
    • Wang X.
    • et al.

    Fibroblast growth factor 21 levels are increased in nonalcoholic fatty liver disease patients and are correlated with hepatic triglyceride.

    J Hepatol. 2010; 53: 934-940https://doi.org/10.1016/j.jhep.2010.05.018

    • Hong E.S.
    • Lim C.
    • Choi H.Y.
    • Lee Y.K.
    • Ku E.J.
    • Moon J.H.
    • et al.

    Plasma fibroblast growth factor 21 levels increase with ectopic fat accumulation and its receptor levels are decreased in the visceral fat of patients with type 2 diabetes.

    BMJ Open Diabetes Res Care. 2019; 7e000776https://doi.org/10.1136/bmjdrc-2019-000776

    • Yang C.
    • Lu W.
    • Lin T.
    • You P.
    • Ye M.
    • Huang Y.
    • et al.

    Activation of Liver FGF21 in hepatocarcinogenesis and during hepatic stress.

    BMC Gastroenterol. 2013; 13: 67https://doi.org/10.1186/1471-230X-13-67

    • Flisiak-Jackiewicz M.
    • Bobrus-Chociej A.
    • Wasilewska N.
    • Tarasow E.
    • Wojtkowska M.
    • Lebensztejn D.M.

    Can hepatokines be regarded as novel non-invasive serum biomarkers of intrahepatic lipid content in obese children?.

    Adv Med Sci. 2019; 64: 280-284https://doi.org/10.1016/j.advms.2019.02.005

    • Yang M.
    • Xu D.
    • Liu Y.
    • Guo X.
    • Li W.
    • Guo C.
    • et al.

    Combined Serum Biomarkers in Non-Invasive Diagnosis of Non-Alcoholic Steatohepatitis.

    PLoS ONE. 2015; 10e0131664https://doi.org/10.1371/journal.pone.0131664

    • Yu H.-T.
    • Yu M.
    • Li C.-Y.
    • Zhan Y.-Q.
    • Xu W.-X.
    • Li Y.-H.
    • et al.

    Specific expression and regulation of hepassocin in the liver and down-regulation of the correlation of HNF1alpha with decreased levels of hepassocin in human hepatocellular carcinoma.

    J Biol Chem. 2009; 284: 13335-13347https://doi.org/10.1074/jbc.M806393200

    • Abdelmoemen G.
    • Khodeir S.A.
    • Zaki A.N.
    • Kassab M.
    • Abou-Saif S.
    • Abd-Elsalam S.

    Overexpression of Hepassocin in Diabetic Patients with Nonalcoholic Fatty Liver Disease May Facilitate Increased Hepatic Lipid Accumulation.

    Endocr Metab Immune Disord Drug Targets. 2019; 19: 185-188https://doi.org/10.2174/1871530318666180716100543

    • Wu H.-T.
    • Lu F.-H.
    • Ou H.-Y.
    • Su Y.-C.
    • Hung H.-C.
    • Wu J.-S.
    • et al.

    The role of hepassocin in the development of non-alcoholic fatty liver disease.

    J Hepatol. 2013; 59: 1065-1072https://doi.org/10.1016/j.jhep.2013.06.004

    • Demchev V.
    • Malana G.
    • Vangala D.
    • Stoll J.
    • Desai A.
    • Kang H.W.
    • et al.

    Targeted deletion of fibrinogen like protein 1 reveals a novel role in energy substrate utilization.

    PLoS ONE. 2013; 8e58084https://doi.org/10.1371/journal.pone.0058084

    • Cheng K.-P.
    • Ou H.-Y.
    • Hung H.-C.
    • Li C.-H.
    • Fan K.-C.
    • Wu J.-S.
    • et al.

    Unsaturated Fatty Acids Increase the Expression of Hepassocin through a Signal Transducer and Activator of Transcription 3-Dependent Pathway in HepG2 Cells.

    Lipids. 2018; 53: 863-869https://doi.org/10.1002/lipd.12099

    • Jung T.W.
    • Chung Y.H.
    • Kim H.-C.
    • Abd El-Aty A.M.
    • Jeong J.H.

    Hyperlipidemia-induced hepassocin in the liver contributes to insulin resistance in skeletal muscle.

    Mol Cell Endocrinol. 2018; 470: 26-33https://doi.org/10.1016/j.mce.2017.10.014

    • Li C.-Y.
    • Cao C.-Z.
    • Xu W.-X.
    • Cao M.-M.
    • Yang F.
    • Dong L.
    • et al.

    Recombinant human hepassocin stimulates proliferation of hepatocytes in vivo and improves survival in rats with fulminant hepatic failure.

    Gut. 2010; 59: 817-826https://doi.org/10.1136/gut.2008.171124

    • Yan J.
    • Yu Y.
    • Wang N.
    • Chang Y.
    • Ying H.
    • Liu W.
    • et al.

    LFIRE-1/HFREP-1, a liver-specific gene, is frequently downregulated and has growth suppressor activity in hepatocellular carcinoma.

    Oncogene. 2004; 23: 1939-1949https://doi.org/10.1038/sj.onc.1207306

    • Ni Q.
    • Ding K.
    • Wang K.-Q.
    • He J.
    • Yin C.
    • Shi J.
    • et al.

    Deletion of HNF1α in hepatocytes results in fatty liver-related hepatocellular carcinoma in mice.

    FEBS Lett. 2017; 591 ()https://doi.org/10.1002/1873-3468.12689

    • Perduca M.
    • Nicolis S.
    • Mannucci B.
    • Galliano M.
    • Monaco H.L.

    Human plasma retinol-binding protein (RBP4) is also a fatty acid-binding protein.

    Biochim Biophys Acta Mol Cell Biol Lipids. 2018; 1863: 458-466https://doi.org/10.1016/j.bbalip.2018.01.010

    • Ronne H.
    • Ocklind C.
    • Wiman K.
    • Rask L.
    • Obrink B.
    • Peterson P.A.

    Ligand-dependent regulation of intracellular protein transport: effect of vitamin a on the secretion of the retinol-binding protein.

    J Cell Biol. 1983; 96: 907-910https://doi.org/10.1083/jcb.96.3.907

    • Zhong G.
    • Kirkwood J.
    • Won K.-J.
    • Tjota N.
    • Jeong H.
    • Isoherranen N.

    Characterization of Vitamin A Metabolome in Human Livers With and Without Nonalcoholic Fatty Liver Disease.

    J Pharmacol Exp Ther. 2019; 370: 92-103https://doi.org/10.1124/jpet.119.258517

    • Kotnik P.
    • Fischer-Posovszky P.
    • Wabitsch M.

    RBP4: a controversial adipokine.

    Eur J Endocrinol. 2011; 165: 703-711https://doi.org/10.1530/EJE-11-0431

    • Kashyap S.R.
    • Diab D.L.
    • Baker A.R.
    • Yerian L.
    • Bajaj H.
    • Gray-McGuire C.
    • et al.

    Triglyceride levels and not adipokine concentrations are closely related to severity of nonalcoholic fatty liver disease in an obesity surgery cohort.

    Obesity (Silver Spring). 2009; 17: 1696-1701https://doi.org/10.1038/oby.2009.89

    • Alkhouri N.
    • Lopez R.
    • Berk M.
    • Feldstein A.E.

    Serum retinol-binding protein 4 levels in patients with nonalcoholic fatty liver disease.

    J Clin Gastroenterol. 2009; 43: 985-989https://doi.org/10.1097/MCG.0b013e3181a0998d

    • Milner K.-L.
    • van der Poorten D.
    • Xu A.
    • Bugianesi E.
    • Kench J.G.
    • Lam K.S.L.
    • et al.

    Adipocyte fatty acid binding protein levels relate to inflammation and fibrosis in nonalcoholic fatty liver disease.

    Hepatology. 2009; 49: 1926-1934https://doi.org/10.1002/hep.22896

    • Liu Y.
    • Mu D.
    • Chen H.
    • Li D.
    • Song J.
    • Zhong Y.
    • et al.

    Retinol-Binding Protein 4 Induces Hepatic Mitochondrial Dysfunction and Promotes Hepatic Steatosis.

    J Clin Endocrinol Metab. 2016; 101: 4338-4348https://doi.org/10.1210/jc.2016-1320

    • Wang X.
    • Chen X.
    • Zhang H.
    • Pang J.
    • Lin J.
    • Xu X.
    • et al.

    Circulating retinol-binding protein 4 is associated with the development and regression of non-alcoholic fatty liver disease.

    Diabetes Metab. 2019; https://doi.org/10.1016/j.diabet.2019.04.009

    • Petta S.
    • Tripodo C.
    • Grimaudo S.
    • Cabibi D.
    • Cammà C.
    • Di Cristina A.
    • et al.

    High liver RBP4 protein content is associated with histological features in patients with genotype 1 chronic hepatitis C and with nonalcoholic steatohepatitis.

    Dig Liver Dis. 2011; 43: 404-410https://doi.org/10.1016/j.dld.2010.12.013

    • Graham T.E.
    • Yang Q.
    • Blüher M.
    • Hammarstedt A.
    • Ciaraldi T.P.
    • Henry R.R.
    • et al.

    Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects.

    N Engl J Med. 2006; 354: 2552-2563https://doi.org/10.1056/NEJMoa054862

    • Yang Q.
    • Graham T.E.
    • Mody N.
    • Preitner F.
    • Peroni O.D.
    • Zabolotny J.M.
    • et al.

    Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes.

    Nature. 2005; 436: 356-362https://doi.org/10.1038/nature03711

    • Seo J.A.
    • Kim N.H.
    • Park S.Y.
    • Kim H.Y.
    • Ryu O.H.
    • Lee K.W.
    • et al.

    Serum retinol-binding protein 4 levels are elevated in non-alcoholic fatty liver disease.

    Clin Endocrinol (Oxf). 2008; 68: 555-560https://doi.org/10.1111/j.1365-2265.2007.03072.x

    • Wu H.
    • Jia W.
    • Bao Y.
    • Lu J.
    • Zhu J.
    • Wang R.
    • et al.

    Serum retinol binding protein 4 and nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus.

    Diabetes Res Clin Pract. 2008; 79: 185-190https://doi.org/10.1016/j.diabres.2007.08.016

    • Bahr M.J.
    • Boeker K.H.W.
    • Manns M.P.
    • Tietge U.J.F.

    Decreased hepatic RBP4 secretion is correlated with reduced hepatic glucose production but is not associated with insulin resistance in patients with liver cirrhosis.

    Clin Endocrinol (Oxf). 2009; 70: 60-65https://doi.org/10.1111/j.1365-2265.2008.03295.x

    • Schina M.
    • Koskinas J.
    • Tiniakos D.
    • Hadziyannis E.
    • Savvas S.
    • Karamanos B.
    • et al.

    Circulating and liver tissue levels of retinol-binding protein-4 in non-alcoholic fatty liver disease.

    Hepatol Res. 2009; 39: 972-978https://doi.org/10.1111/j.1872-034X.2009.00534.x

    • Nobili V.
    • Alkhouri N.
    • Alisi A.
    • Ottino S.
    • Lopez R.
    • Manco M.
    • et al.

    Retinol-binding protein 4: a promising circulating marker of liver damage in pediatric nonalcoholic fatty liver disease.

    Clin Gastroenterol Hepatol. 2009; 7: 575-579https://doi.org/10.1016/j.cgh.2008.12.031

    • Saeed A.
    • Dullaart R.P.F.
    • Schreuder T.C.M.A.
    • Blokzijl H.
    • Faber K.N.

    Disturbed Vitamin A Metabolism in Non-Alcoholic Fatty Liver Disease (NAFLD).

    Nutrients. 2017; 10https://doi.org/10.3390/nu10010029

    • Carbone F.
    • La Rocca C.
    • Matarese G.

    Immunological functions of leptin and adiponectin.

    Biochimie. 2012; 94: 2082-2088https://doi.org/10.1016/j.biochi.2012.05.018

    • Wree A.
    • Kahraman A.
    • Gerken G.
    • Canbay A.

    Obesity affects the liver – the link between adipocytes and hepatocytes.

    Digestion. 2011; 83: 124-133https://doi.org/10.1159/000318741

    • Holland W.L.
    • Adams A.C.
    • Brozinick J.T.
    • Bui H.H.
    • Miyauchi Y.
    • Kusminski C.M.
    • et al.

    An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice.

    Cell Metab. 2013; 17: 790-797https://doi.org/10.1016/j.cmet.2013.03.019

    • Ryo M.
    • Nakamura T.
    • Kihara S.
    • Kumada M.
    • Shibazaki S.
    • Takahashi M.
    • et al.

    Adiponectin as a biomarker of the metabolic syndrome.

    Circ J. 2004; 68: 975-981

    • Nannipieri M.
    • Cecchetti F.
    • Anselmino M.
    • Mancini E.
    • Marchetti G.
    • Bonotti A.
    • et al.

    Pattern of Expression of Adiponectin Receptors in Human Liver and its Relation to Nonalcoholic Steatohepatitis.

    OBES SURG. 2008; 19: 467https://doi.org/10.1007/s11695-008-9701-x

    • Lesmana C.R.
    • Lesmana L.A.
    • Akbar N.
    • Gani R.A.
    • Simandjuntak W.
    • Oemardi M.
    • et al.

    Clinical picture, insulin resistance, and adipocytokines profiles of nonalcoholic steatohepatitis (NASH) patients in Indonesia.

    Acta Medica Indonesiana. 2009; 41: 6-10

    • Li S.
    • Shin H.J.
    • Ding E.L.
    • Dam RM van

    Adiponectin Levels and Risk of Type 2 Diabetes: A Systematic Review and Meta-analysis.

    JAMA. 2009; 302: 179-188https://doi.org/10.1001/jama.2009.976

    • Polyzos S.A.
    • Toulis K.A.
    • Goulis D.G.
    • Zavos C.
    • Kountouras J.

    Serum total adiponectin in nonalcoholic fatty liver disease: a systematic review and meta-analysis.

    Metabolism. 2011; 60: 313-326https://doi.org/10.1016/j.metabol.2010.09.003

    • Kälsch J.
    • Bechmann L.P.
    • Heider D.
    • Best J.
    • Manka P.
    • Kälsch H.
    • et al.

    Normal liver enzymes are correlated with severity of metabolic syndrome in a large population based cohort.

    Sci Rep. 2015; 5: 13058https://doi.org/10.1038/srep13058

    • Canbay A.
    • Kälsch J.
    • Neumann U.
    • Rau M.
    • Hohenester S.
    • Baba H.A.
    • et al.

    Non-invasive assessment of NAFLD as systemic disease-A machine learning perspective.

    PLoS ONE. 2019; 14 ()https://doi.org/10.1371/journal.pone.0214436

  • Adiponectin in insulin resistance: lessons from translational research.

    Am J Clin Nutr. 2010; 91: 258S-261Shttps://doi.org/10.3945/ajcn.2009.28449C

    • Gamberi T.
    • Magherini F.
    • Modesti A.
    • Fiaschi T.

    Adiponectin Signaling Pathways in Liver Diseases.

    Biomedicines. 2018; 6https://doi.org/10.3390/biomedicines6020052

  • High molecular weight adiponectin inhibits proliferation of hepatic stellate cells via activation of adenosine monophosphate–activated protein kinase.

    Hepatology. 2008; 47: 677-685https://doi.org/10.1002/hep.21991

    • Hanley A.J.G.
    • Bowden D.
    • Wagenknecht L.E.
    • Balasubramanyam A.
    • Langfeld C.
    • Saad M.F.
    • et al.

    Associations of Adiponectin with Body Fat Distribution and Insulin Sensitivity in Nondiabetic Hispanics and African-Americans.

    J Clin Endocrinol Metab. 2007; 92: 2665-2671https://doi.org/10.1210/jc.2006-2614

    • Vaidya A.
    • Williams J.S.
    • Forman J.P.

    THE INDEPENDENT ASSOCIATION BETWEEN 25-HYDROXYVITAMIN D AND ADIPONECTIN AND ITS RELATION WITH BMI IN TWO LARGE COHORTS: the NHS and the HPFS.

    Obesity (Silver Spring). 2012; 20: 186-191https://doi.org/10.1038/oby.2011.210

    • Wree A.
    • Schlattjan M.
    • Bechmann L.P.
    • Claudel T.
    • Sowa J.-P.
    • Stojakovic T.
    • et al.

    Adipocyte cell size, free fatty acids and apolipoproteins are associated with non-alcoholic liver injury progression in severely obese patients.

    Metab Clin Exp. 2014; 63: 1542-1552https://doi.org/10.1016/j.metabol.2014.09.001

    • Gariballa S.
    • Alkaabi J.
    • Yasin J.
    • Al Essa A.

    Total adiponectin in overweight and obese subjects and its response to visceral fat loss.

    BMC Endocrine Disorders. 2019; 19: 55https://doi.org/10.1186/s12902-019-0386-z

    • Bril F.
    • Maximos M.
    • Portillo-Sanchez P.
    • Biernacki D.
    • Lomonaco R.
    • Subbarayan S.
    • et al.

    Relationship of vitamin D with insulin resistance and disease severity in non-alcoholic steatohepatitis.

    J Hepatol. 2015; 62: 405-411https://doi.org/10.1016/j.jhep.2014.08.040

    • Cusi K.
    • Orsak B.
    • Bril F.
    • Lomonaco R.
    • Hecht J.
    • Ortiz-Lopez C.
    • et al.

    Long-Term Pioglitazone Treatment for Patients With Nonalcoholic Steatohepatitis and Prediabetes or Type 2 Diabetes Mellitus: A Randomized Trial.

    Ann Intern Med. 2016; 165: 305-315https://doi.org/10.7326/M15-1774

    • Polyzos S.A.
    • Kountouras J.
    • Zavos C.
    • Tsiaousi E.

    The role of adiponectin in the pathogenesis and treatment of non-alcoholic fatty liver disease.

    Diabetes, Obesity and Metabolism. 2010; 12: 365-383https://doi.org/10.1111/j.1463-1326.2009.01176.x

    • Wree A.
    • Mayer A.
    • Westphal S.
    • Beilfuss A.
    • Canbay A.
    • Schick R.R.
    • et al.

    Adipokine expression in brown and white adipocytes in response to hypoxia.

    J Endocrinol Invest. 2012; 35: 522-527https://doi.org/10.3275/7964

    • Hosogai N.
    • Fukuhara A.
    • Oshima K.
    • Miyata Y.
    • Tanaka S.
    • Segawa K.
    • et al.

    Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation.

    Diabetes. 2007; 56: 901-911https://doi.org/10.2337/db06-0911

    • Al-Gayyar M.M.H.
    • Abbas A.
    • Hamdan A.M.

    Chemopreventive and hepatoprotective roles of adiponectin (SULF2 inhibitor) in hepatocelluar carcinoma.

    Biol Chem. 2016; 397: 257-267https://doi.org/10.1515/hsz-2015-0265

    • Man K.
    • Ng K.T.P.
    • Xu A.
    • Cheng Q.
    • Lo C.M.
    • Xiao J.W.
    • et al.

    Suppression of liver tumor growth and metastasis by adiponectin in nude mice through inhibition of tumor angiogenesis and downregulation of Rho kinase/IFN-inducible protein 10/matrix metalloproteinase 9 signaling.

    Clin Cancer Res. 2010; 16: 967-977https://doi.org/10.1158/1078-0432.CCR-09-1487

    • Guo R.
    • Zhang Y.
    • Turdi S.
    • Ren J.

    Adiponectin knockout accentuates high fat diet-induced obesity and cardiac dysfunction: Role of autophagy.

    Biochim Biophys Acta. 2013; 1832: 1136-1148https://doi.org/10.1016/j.bbadis.2013.03.013

    • Asano T.
    • Watanabe K.
    • Kubota N.
    • Gunji T.
    • Omata M.
    • Kadowaki T.
    • et al.

    Adiponectin knockout mice on high fat diet develop fibrosing steatohepatitis.

    J Gastroenterol Hepatol. 2009; 24: 1669-1676https://doi.org/10.1111/j.1440-1746.2009.06039.x

    • Saxena N.K.
    • Fu P.P.
    • Nagalingam A.
    • Wang J.
    • Handy J.
    • Cohen C.
    • et al.

    Adiponectin modulates C-jun N-terminal kinase and mammalian target of rapamycin and inhibits hepatocellular carcinoma.

    Gastroenterology. 2010; 139 (): 1762-1773https://doi.org/10.1053/j.gastro.2010.07.001

    • Sadik N.A.E.-H.
    • Ahmed A.
    • Ahmed S.

    The significance of serum levels of adiponectin, leptin, and hyaluronic acid in hepatocellular carcinoma of cirrhotic and noncirrhotic patients.

    Hum Exp Toxicol. 2012; 31: 311-321https://doi.org/10.1177/0960327111431091

    • da Silva T.E.
    • Costa-Silva M.
    • Correa C.G.
    • Denardin G.
    • Alencar M.L.A.
    • Coelho M.S.P.H.
    • et al.

    Clinical Significance of Serum Adiponectin and Resistin Levels in Liver Cirrhosis.

    Ann Hepatol. 2018; 17: 286-299https://doi.org/10.5604/01.3001.0010.8659

    • Shen J.
    • Yeh C.-C.
    • Wang Q.
    • Gurvich I.
    • Siegel A.B.
    • Santella R.M.

    Plasma Adiponectin and Hepatocellular Carcinoma Survival Among Patients Without Liver Transplantation.

    Anticancer Res. 2016; 36: 5307-5314https://doi.org/10.21873/anticanres.11103

    • Siegel A.B.
    • Goyal A.
    • Salomao M.
    • Wang S.
    • Lee V.
    • Hsu C.
    • et al.

    Serum adiponectin is associated with worsened overall survival in a prospective cohort of hepatocellular carcinoma patients.

    Oncology. 2015; 88: 57-68https://doi.org/10.1159/000367971

    • Tacke F.
    • Wüstefeld T.
    • Horn R.
    • Luedde T.
    • Srinivas Rao A.
    • Manns M.P.
    • et al.

    High adiponectin in chronic liver disease and cholestasis suggests biliary route of adiponectin excretion in vivo.

    J Hepatol. 2005; 42: 666-673https://doi.org/10.1016/j.jhep.2004.12.024

    • Daviaud D.
    • Boucher J.
    • Gesta S.
    • Dray C.
    • Guigne C.
    • Quilliot D.
    • et al.

    TNFalpha up-regulates apelin expression in human and mouse adipose tissue.

    FASEB J. 2006; 20: 1528-1530https://doi.org/10.1096/fj.05-5243fje

    • Boucher J.
    • Masri B.
    • Daviaud D.
    • Gesta S.
    • Guigné C.
    • Mazzucotelli A.
    • et al.

    Apelin, a newly identified adipokine up-regulated by insulin and obesity.

    Endocrinology. 2005; 146: 1764-1771https://doi.org/10.1210/en.2004-1427

    • Ando W.
    • Yokomori H.
    • Otori K.
    • Oda M.

    The Apelin Receptor APJ in Hematopoietic Stem Cells/Progenitor Cells in the Early Stage of Non-Alcoholic Steatohepatitis.

    J Clin Med Res. 2017; 9: 809-811https://doi.org/10.14740/jocmr3103w

    • Muto J.
    • Shirabe K.
    • Yoshizumi T.
    • Ikegami T.
    • Aishima S.
    • Ishigami K.
    • et al.

    The apelin-APJ system induces tumor arteriogenesis in hepatocellular carcinoma.

    Anticancer Res. 2014; 34: 5313-5320

    • Wang Y.
    • Song J.
    • Bian H.
    • Bo J.
    • Lv S.
    • Pan W.
    • et al.

    Apelin promotes hepatic fibrosis through ERK signaling in LX-2 cells.

    Mol Cell Biochem. 2019; 460: 205-215https://doi.org/10.1007/s11010-019-03581-0

    • Montazerifar F.
    • Bakhshipour A.R.
    • Karajibani M.
    • Torki Z.
    • Dashipour A.R.

    Serum omentin-1, vaspin, and apelin levels and central obesity in patients with nonalcoholic fatty liver disease.

    J Res Med Sci. 2017; 22: 70https://doi.org/10.4103/jrms.JRMS_788_16

    • Ercin C.N.
    • Dogru T.
    • Tapan S.
    • Kara M.
    • Haymana C.
    • Karadurmus N.
    • et al.

    Plasma apelin levels in subjects with nonalcoholic fatty liver disease.

    Metab Clin Exp. 2010; 59: 977-981https://doi.org/10.1016/j.metabol.2009.10.019

    • Huang J.
    • Kang S.
    • Park S.-J.
    • Im D.-S.

    Apelin protects against liver X receptor-mediated steatosis through AMPK and PPARα in human and mouse hepatocytes.

    Cell Signal. 2017; 39: 84-94https://doi.org/10.1016/j.cellsig.2017.08.003

    • Lee T.
    • Park C.-K.
    • Ha S.Y.

    Prognostic Role of Apelin Receptor Expression in Hepatocellular Carcinoma Treated With Curative Surgical Resection.

    Anticancer Res. 2019; 39: 3025-3031https://doi.org/10.21873/anticanres.13435

    • Chen H.
    • Wong C.-C.
    • Liu D.
    • Go M.Y.Y.
    • Wu B.
    • Peng S.
    • et al.

    APLN promotes hepatocellular carcinoma through activating PI3K/Akt pathway and is a druggable target.

    Theranostics. 2019; 9: 5246-5260https://doi.org/10.7150/thno.34713

    • Bozaoglu K.
    • Bolton K.
    • McMillan J.
    • Zimmet P.
    • Jowett J.
    • Collier G.
    • et al.

    Chemerin is a novel adipokine associated with obesity and metabolic syndrome.

    Endocrinology. 2007; 148: 4687-4694https://doi.org/10.1210/en.2007-0175

    • Bozaoglu K.
    • Segal D.
    • Shields K.A.
    • Cummings N.
    • Curran J.E.
    • Comuzzie A.G.
    • et al.

    Chemerin is associated with metabolic syndrome phenotypes in a Mexican-American population.

    J Clin Endocrinol Metab. 2009; 94: 3085-3088https://doi.org/10.1210/jc.2008-1833

    • Parlee S.D.
    • Ernst M.C.
    • Muruganandan S.
    • Sinal C.J.
    • Goralski K.B.

    Serum Chemerin Levels Vary with Time of Day and Are Modified by Obesity and Tumor Necrosis Factor-α.

    Endocrinology. 2010; 151: 2590-2602https://doi.org/10.1210/en.2009-0794

    • Kukla M.
    • Zwirska-Korczala K.
    • Hartleb M.
    • Waluga M.
    • Chwist A.
    • Kajor M.
    • et al.

    Serum chemerin and vaspin in non-alcoholic fatty liver disease.

    Scand J Gastroenterol. 2010; 45: 235-242https://doi.org/10.3109/00365520903443852

    • Yilmaz Y.
    • Yonal O.
    • Kurt R.
    • Alahdab Y.O.
    • Eren F.
    • Ozdogan O.
    • et al.

    Serum levels of omentin, chemerin and adipsin in patients with biopsy-proven nonalcoholic fatty liver disease.

    Scandinavian Journal of Gastroenterology. 2011; 46: 91-97https://doi.org/10.3109/00365521.2010.516452

    • Kajor M.
    • Kukla M.
    • Waluga M.
    • Ł Liszka
    • Dyaczyński M.
    • Kowalski G.
    • et al.

    Hepatic chemerin mRNA in morbidly obese patients with nonalcoholic fatty liver disease.

    Pol J Pathol. 2017; 68: 117-127https://doi.org/10.5114/pjp.2017.69687

    • Bekaert M.
    • Ouwens D.M.
    • Hörbelt T.
    • Van de Velde F.
    • Fahlbusch P.
    • Herzfeld de Wiza D.
    • et al.

    Reduced expression of chemerin in visceral adipose tissue associates with hepatic steatosis in patients with obesity.

    Obesity (Silver Spring). 2016; 24: 2544-2552https://doi.org/10.1002/oby.21674

    • Tan B.K.
    • Chen J.
    • Farhatullah S.
    • Adya R.
    • Kaur J.
    • Heutling D.
    • et al.

    Insulin and Metformin Regulate Circulating and Adipose Tissue Chemerin.

    Diabetes. 2009; 58 ()https://doi.org/10.2337/db08-1528

    • Sell H.
    • Divoux A.
    • Poitou C.
    • Basdevant A.
    • Bouillot J.-L.
    • Bedossa P.
    • et al.

    Chemerin Correlates with Markers for Fatty Liver in Morbidly Obese Patients and Strongly Decreases after Weight Loss Induced by Bariatric Surgery.

    J Clin Endocrinol Metab. 2010; 95: 2892-2896https://doi.org/10.1210/jc.2009-2374

    • Pohl R.
    • Haberl E.M.
    • Rein‐Fischboeck L.
    • Zimny S.
    • Neumann M.
    • Aslanidis C.
    • et al.

    Hepatic chemerin mRNA expression is reduced in human nonalcoholic steatohepatitis.

    European Journal of Clinical Investigation. 2017; 47: 7-18https://doi.org/10.1111/eci.12695

    • Ebert T.
    • Gebhardt C.
    • Scholz M.
    • Wohland T.
    • Schleinitz D.
    • Fasshauer M.
    • et al.

    Relationship Between 12 Adipocytokines and Distinct Components of the Metabolic Syndrome.

    J Clin Endocrinol Metab. 2018; 103: 1015-1023https://doi.org/10.1210/jc.2017-02085

    • Deng Y.
    • Wang H.
    • Lu Y.
    • Liu S.
    • Zhang Q.
    • Huang J.
    • et al.

    Identification of chemerin as a novel FXR target gene down-regulated in the progression of nonalcoholic steatohepatitis.

    Endocrinology. 2013; 154: 1794-1801https://doi.org/10.1210/en.2012-2126

    • Haberl E.M.
    • Pohl R.
    • Rein-Fischboeck L.
    • Feder S.
    • Sinal C.J.
    • Buechler C.

    Chemerin in a Mouse Model of Non-alcoholic Steatohepatitis and Hepatocarcinogenesis.

    Anticancer Res. 2018; 38: 2649-2657https://doi.org/10.21873/anticanres.12507

    • Krautbauer S.
    • Wanninger J.
    • Eisinger K.
    • Hader Y.
    • Beck M.
    • Kopp A.
    • et al.

    Chemerin is highly expressed in hepatocytes and is induced in non-alcoholic steatohepatitis liver.

    Experimental and Molecular Pathology. 2013; 95: 199-205https://doi.org/10.1016/j.yexmp.2013.07.009

    • Döcke S.
    • Lock J.F.
    • Birkenfeld A.L.
    • Hoppe S.
    • Lieske S.
    • Rieger A.
    • et al.

    Elevated hepatic chemerin mRNA expression in human non-alcoholic fatty liver disease.

    Eur J Endocrinol. 2013; 169: 547-557https://doi.org/10.1530/EJE-13-0112

    • Lin W.
    • Chen Y.-L.
    • Jiang L.
    • Chen J.-K.

    Reduced expression of chemerin is associated with a poor prognosis and a lowed infiltration of both dendritic cells and natural killer cells in human hepatocellular carcinoma.

    Clin Lab. 2011; 57: 879-885

    • Imai K.
    • Takai K.
    • Hanai T.
    • Shiraki M.
    • Suzuki Y.
    • Hayashi H.
    • et al.

    Impact of serum chemerin levels on liver functional reserves and platelet counts in patients with hepatocellular carcinoma.

    Int J Mol Sci. 2014; 15: 11294-11306https://doi.org/10.3390/ijms150711294

    • Horn P.
    • von Loeffelholz C.
    • Forkert F.
    • Stengel S.
    • Reuken P.
    • Aschenbach R.
    • et al.

    Low circulating chemerin levels correlate with hepatic dysfunction and increased mortality in decompensated liver cirrhosis.

    Sci Rep. 2018; 8: 9242https://doi.org/10.1038/s41598-018-27543-6

    • Halaas J.L.
    • Gajiwala K.S.
    • Maffei M.
    • Cohen S.L.
    • Chait B.T.
    • Rabinowitz D.
    • et al.

    Weight-reducing effects of the plasma protein encoded by the obese gene.

    Science. 1995; 269: 543-546https://doi.org/10.1126/science.7624777

  • Leptin signaling, adiposity, and energy balance.

    Ann N Y Acad Sci. 2002; 967: 379-388https://doi.org/10.1111/j.1749-6632.2002.tb04293.x

    • Izquierdo A.G.
    • Crujeiras A.B.
    • Casanueva F.F.
    • Carreira M.C.

    Leptin, Obesity, and Leptin Resistance: Where Are We 25 Years Later?.

    Nutrients. 2019; 11https://doi.org/10.3390/nu11112704

    • Montague C.T.
    • Farooqi I.S.
    • Whitehead J.P.
    • Soos M.A.
    • Rau H.
    • Wareham N.J.
    • et al.

    Congenital leptin deficiency is associated with severe early-onset obesity in humans.

    Nature. 1997; 387: 903-908https://doi.org/10.1038/43185

    • Kamada Y.
    • Takehara T.
    • Hayashi N.

    Adipocytokines and liver disease.

    J Gastroenterol. 2008; 43: 811-822https://doi.org/10.1007/s00535-008-2213-6

    • Polyzos S.A.
    • Aronis K.N.
    • Kountouras J.
    • Raptis D.D.
    • Vasiloglou M.F.
    • Mantzoros C.S.

    Circulating leptin in non-alcoholic fatty liver disease: a systematic review and meta-analysis.

    Diabetologia. 2016; 59: 30-43https://doi.org/10.1007/s00125-015-3769-3

    • Toczylowski K.
    • Hirnle T.
    • Harasiuk D.
    • Zabielski P.
    • Lewczuk A.
    • Dmitruk I.
    • et al.

    Plasma concentration and expression of adipokines in epicardial and subcutaneous adipose tissue are associated with impaired left ventricular filling pattern.

    J Transl Med. 2019; 17: 310https://doi.org/10.1186/s12967-019-2060-7

    • Sharma D.
    • Wang J.
    • Fu P.P.
    • Sharma S.
    • Nagalingam A.
    • Mells J.
    • et al.

    Adiponectin antagonizes the oncogenic actions of leptin in hepatocellular carcinogenesis.

    Hepatology. 2010; 52: 1713-1722https://doi.org/10.1002/hep.23892

  • Leptin in relation to hepatocellular carcinoma in patients with liver cirrhosis.

    Horm Res. 2003; 60: 185-190https://doi.org/10.1159/000073231

    • Andrighetto L.V.
    • Poziomyck A.K.

    SERUM LEPTIN LEVENS AND HEPATOCELLULAR CARCINOMA: REVIEW ARTICLE.

    Arq Bras Cir Dig. 2016; 29: 276-278https://doi.org/10.1590/0102-6720201600040015

    • Saxena N.K.
    • Ikeda K.
    • Rockey D.C.
    • Friedman S.L.
    • Anania F.A.

    Leptin in hepatic fibrosis: evidence for increased collagen production in stellate cells and lean littermates of ob/ob mice.

    Hepatology. 2002; 35: 762-771https://doi.org/10.1053/jhep.2002.32029

    • Noureddin M.
    • Rinella M.E.

    Nonalcoholic Fatty Liver Disease, Diabetes, Obesity, and Hepatocellular Carcinoma.

    Clin Liver Dis. 2015; 19: 361-379https://doi.org/10.1016/j.cld.2015.01.012

    • Dattaroy D.
    • Pourhoseini S.
    • Das S.
    • Alhasson F.
    • Seth R.K.
    • Nagarkatti M.
    • et al.

    Micro-RNA 21 inhibition of SMAD7 enhances fibrogenesis via leptin-mediated NADPH oxidase in experimental and human nonalcoholic steatohepatitis.

    Am J Physiol Gastrointest Liver Physiol. 2015; 308 ()https://doi.org/10.1152/ajpgi.00346.2014

    • Saxena N.K.
    • Sharma D.
    • Ding X.
    • Lin S.
    • Marra F.
    • Merlin D.
    • et al.

    Concomitant activation of the JAK/STAT, PI3K/AKT, and ERK signaling is involved in leptin-mediated promotion of invasion and migration of hepatocellular carcinoma cells.

    Cancer Res. 2007; 67: 2497-2507https://doi.org/10.1158/0008-5472.CAN-06-3075

    • Fava G.
    • Alpini G.
    • Rychlicki C.
    • Saccomanno S.
    • DeMorrow S.
    • Trozzi L.
    • et al.

    Leptin Enhances Cholangiocarcinoma Cell Growth.

    Cancer Res. 2008; 68: 6752-6761https://doi.org/10.1158/0008-5472.CAN-07-6682

  • Leptin and cancer.

    J Cell Physiol. 2006; 207: 12-22https://doi.org/10.1002/jcp.20472

    • Silswal N.
    • Singh A.K.
    • Aruna B.
    • Mukhopadhyay S.
    • Ghosh S.
    • Ehtesham N.Z.

    Human resistin stimulates the pro-inflammatory cytokines TNF-alpha and IL-12 in macrophages by NF-kappaB-dependent pathway.

    Biochem Biophys Res Commun. 2005; 334: 1092-1101https://doi.org/10.1016/j.bbrc.2005.06.202

    • Filková M.
    • Haluzík M.
    • Gay S.
    • Senolt L.

    The role of resistin as a regulator of inflammation: Implications for various human pathologies.

    Clin Immunol. 2009; 133: 157-170https://doi.org/10.1016/j.clim.2009.07.013

    • Bokarewa M.
    • Nagaev I.
    • Dahlberg L.
    • Smith U.
    • Tarkowski A.

    Resistin, an Adipokine with Potent Proinflammatory Properties.

    The Journal of Immunology. 2005; 174: 5789-5795https://doi.org/10.4049/jimmunol.174.9.5789

    • Degawa-Yamauchi M.
    • Bovenkerk J.E.
    • Juliar B.E.
    • Watson W.
    • Kerr K.
    • Jones R.
    • et al.

    Serum resistin (FIZZ3) protein is increased in obese humans.

    J Clin Endocrinol Metab. 2003; 88: 5452-5455https://doi.org/10.1210/jc.2002-021808

    • McTernan P.G.
    • Fisher F.M.
    • Valsamakis G.
    • Chetty R.
    • Harte A.
    • McTernan C.L.
    • et al.

    Resistin and type 2 diabetes: regulation of resistin expression by insulin and rosiglitazone and the effects of recombinant resistin on lipid and glucose metabolism in human differentiated adipocytes.

    J Clin Endocrinol Metab. 2003; 88: 6098-6106https://doi.org/10.1210/jc.2003-030898

    • Parreño Caparrós E.
    • Illán Gómez F.
    • Gonzálvez Ortega M.
    • Orea Soler I.
    • Pérez Paredes M.
    • Lozano Almela M.L.
    • et al.

    Resistin in morbidly obese patients before and after gastric bypass surgery.

    Nutr Hosp. 2017; 34: 1333-1337

    • Salman A.A.
    • Sultan A.A.E.A.
    • Abdallah A.
    • Abdelsalam A.
    • Mikhail H.M.S.
    • Tourky M.
    • et al.

    Effect of weight loss induced by laparoscopic sleeve gastrectomy on liver histology and serum adipokine levels.

    J Gastroenterol Hepatol. 2020; https://doi.org/10.1111/jgh.15029

    • Franchitto A.
    • Carpino G.
    • Alisi A.
    • De Peppo F.
    • Overi D.
    • De Stefanis C.
    • et al.

    The Contribution of the Adipose Tissue-Liver Axis in Pediatric Patients with Nonalcoholic Fatty Liver Disease after Laparoscopic Sleeve Gastrectomy.

    J Pediatr. 2020; 216 (): 117-127https://doi.org/10.1016/j.jpeds.2019.07.037

    • D’Incao R.B.
    • Tovo C.V.
    • Mattevi V.S.
    • Borges D.O.
    • Ulbrich J.M.
    • Coral G.P.
    • et al.

    Adipokine Levels Versus Hepatic Histopathology in Bariatric Surgery Patients.

    Obes Surg. 2017; 27: 2151-2158https://doi.org/10.1007/s11695-017-2627-4

    • Elsayed E.Y.
    • Mosalam N.A.
    • Mohamed N.R.

    Resistin and Insulin Resistance: A Link Between Inflammation and Hepatocarcinogenesis.

    Asian Pac J Cancer Prev. 2015; 16: 7139-7142

    • Moschen A.R.
    • Kaser A.
    • Enrich B.
    • Mosheimer B.
    • Theurl M.
    • Niederegger H.
    • et al.

    Visfatin, an adipocytokine with proinflammatory and immunomodulating properties.

    J Immunol. 2007; 178: 1748-1758https://doi.org/10.4049/jimmunol.178.3.1748

    • Akbal E.
    • Koçak E.
    • Taş A.
    • Yüksel E.
    • Köklü S.

    Visfatin levels in nonalcoholic fatty liver disease.

    J Clin Lab Anal. 2012; 26: 115-119https://doi.org/10.1002/jcla.21491

    • Amirkalali B.
    • Sohrabi M.R.
    • Esrafily A.
    • Jalali M.
    • Gholami A.
    • Hosseinzadeh P.
    • et al.

    Association between Nicotinamide Phosphoribosyltransferase and de novo Lipogenesis in Nonalcoholic Fatty Liver Disease.

    Med Princ Pract. 2017; 26: 251-257https://doi.org/10.1159/000455862

    • Aller R.
    • de Luis D.A.
    • Izaola O.
    • Sagrado M.G.
    • Conde R.
    • Velasco M.C.
    • et al.

    Influence of visfatin on histopathological changes of non-alcoholic fatty liver disease.

    Dig Dis Sci. 2009; 54: 1772-1777https://doi.org/10.1007/s10620-008-0539-9

    • Kukla M.
    • Ciupińska-Kajor M.
    • Kajor M.
    • Wyleżoł M.
    • Żwirska-Korczala K.
    • Hartleb M.
    • et al.

    Liver visfatin expression in morbidly obese patients with nonalcoholic fatty liver disease undergoing bariatric surgery.

    Pol J Pathol. 2010; 61: 147-153

    • Johannsen K.
    • Flechtner-Mors M.
    • Kratzer W.
    • Koenig W.
    • Boehm B.O.
    • Schmidberger J.
    • et al.

    Association Between Visfatin and Hepatic Steatosis in the General Population During Long-Term Follow-Up.

    Horm Metab Res. 2019; 51: 602-607https://doi.org/10.1055/a-0897-8565

    • Wu Z.
    • Sun Y.
    • Huang Y.
    • Zhu S.
    • Feng Y.
    • Ye H.
    • et al.

    Genetic variant in visfatin gene promoter contributes to reduced risk of hepatocellular carcinoma in a Chinese population.

    Oncotarget. 2016; 7: 77968-77977https://doi.org/10.18632/oncotarget.12864

    • Sun Y.
    • Zhu S.
    • Wu Z.
    • Huang Y.
    • Liu C.
    • Tang S.
    • et al.

    Elevated serum visfatin levels are associated with poor prognosis of hepatocellular carcinoma.

    Oncotarget. 2017; 8: 23427-23435https://doi.org/10.18632/oncotarget.15080

    • Ninomiya S.
    • Shimizu M.
    • Imai K.
    • Takai K.
    • Shiraki M.
    • Hara T.
    • et al.

    Possible role of visfatin in hepatoma progression and the effects of branched-chain amino acids on visfatin-induced proliferation in human hepatoma cells.

    Cancer Prev Res (Phila). 2011; 4: 2092-2100https://doi.org/10.1158/1940-6207.CAPR-11-0340

    • Tsai I.-T.
    • Wang C.-P.
    • Yu T.-H.
    • Lu Y.-C.
    • Lin C.-W.
    • Lu L.-F.
    • et al.

    Circulating visfatin level is associated with hepatocellular carcinoma in chronic hepatitis B or C virus infection.

    Cytokine. 2017; 90: 54-59https://doi.org/10.1016/j.cyto.2016.10.007

    • Brandl K.
    • Hartmann P.
    • Jih L.J.
    • Pizzo D.P.
    • Argemi J.
    • Ventura-Cots M.
    • et al.

    Dysregulation of serum bile acids and FGF19 in alcoholic hepatitis.

    J Hepatol. 2018; 69: 396-405https://doi.org/10.1016/j.jhep.2018.03.031

    • Huang H.-H.
    • Lee W.-J.
    • Chen S.-C.
    • Chen T.-F.
    • Lee S.-D.
    • Chen C.-Y.

    Bile Acid and Fibroblast Growth Factor 19 Regulation in Obese Diabetics, and Non-Alcoholic Fatty Liver Disease after Sleeve Gastrectomy.

    J Clin Med. 2019; 8https://doi.org/10.3390/jcm8060815

    • Zhou Z.
    • Chen H.
    • Ju H.
    • Sun M.

    Circulating retinol binding protein 4 levels in nonalcoholic fatty liver disease: a systematic review and meta-analysis.

    Lipids Health Dis. 2017; 16: 180https://doi.org/10.1186/s12944-017-0566-7

    • Terra X.
    • Auguet T.
    • Broch M.
    • Sabench F.
    • Hernández M.
    • Pastor R.M.
    • et al.

    Retinol binding protein-4 circulating levels were higher in nonalcoholic fatty liver disease vs. histologically normal liver from morbidly obese women.

    Obesity (Silver Spring). 2013; 21: 170-177https://doi.org/10.1002/oby.20233

    • Yagmur E.
    • Weiskirchen R.
    • Gressner A.M.
    • Trautwein C.
    • Tacke F.

    Insulin resistance in liver cirrhosis is not associated with circulating retinol-binding protein 4.

    Diabetes Care. 2007; 30: 1168-1172https://doi.org/10.2337/dc06-2323

  • Source Link

    Related Articles

    Leave a Comment

    This website uses cookies to improve your experience. We will assume you are ok with this, but you can opt-out if you wish. Accept Read More

    %d bloggers like this: