Home Journals Hepatobiliary acid-base homeostasis: insights from analogous secretory epithelia

Hepatobiliary acid-base homeostasis: insights from analogous secretory epithelia

Credits to the Source Link Daniel
Hepatobiliary acid-base homeostasis: insights from analogous secretory epithelia
    • Terziroli Beretta-Piccoli B.
    • Mieli-Vergani G.
    • Vergani D.
    • Vierling J.M.
    • Adams D.
    • Alpini G.
    • et al.

    The challenges of primary biliary cholangitis: What is new and what needs to be done.

    J Autoimmun. 2019; 105: 102328https://doi.org/10.1016/j.jaut.2019.102328

    • Karlsen T.H.
    • Folseraas T.
    • Thorburn D.
    • Vesterhus M.

    Primary sclerosing cholangitis – a comprehensive review.

    J Hepatol. 2017; 67: 1298-1323https://doi.org/10.1016/j.jhep.2017.07.022

    • Prieto J.
    • García N.
    • Martí-Climent J.
    • Peñuelas I.
    • Richter J.
    • Medina J.

    Assessment of Biliary Bicarbonate Secretion in Humans by Positron Emission Tomography.

    Gastroenterology. 1999; 117: 167-172https://doi.org/10.1016/s0016-5085(99)70564-0

    • Banales J.
    • Sáez E.
    • Uriz M.
    • Sarvide S.
    • Urribarri A.
    • Splinter P.
    • et al.

    Upregulation of mir-506 Leads to Decreased AE2 Expression in Biliary Epithelium of Patients with Primary Biliary Cirrhosis.

    Hepatology. 2012; 56: 687-697https://doi.org/10.1002/hep.25691

    • Beuers U.
    • Hohenester S.
    • de Buy Wenniger L.J.M.
    • Kremer A.E.
    • Jansen P.L.M.
    • Oude Elferink RPJ

    The biliary HCO3- umbrella: a unifying hypothesis on pathogenetic and therapeutic aspects of fibrosing cholangiopathies.

    Hepatology. 2010; 52: 1489-1496https://doi.org/10.1002/hep.23810

    • Hohenester S.
    • Maillette de Buy Wenniger L.
    • Paulusma C.C.
    • van Vliet S.J.
    • Jefferson D.M.
    • Oude Elferink R.P.
    • et al.

    A biliary HCO3- umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes.

    Hepatology. 2012; 55: 173-183https://doi.org/10.1002/hep.24691

  • Drug insight: Mechanisms and sites of action of ursodeoxycholic acid in cholestasis.

    Nat Clin Pract Gastroenterol Hepatol. 2006; 3: 318-328https://doi.org/10.1038/ncpgasthep0521

    • Beuers U.
    • Trauner M.
    • Jansen P.
    • Poupon R.

    New paradigms in the treatment of hepatic cholestasis: From UDCA to FXR, PXR and beyond.

    J Hepatol. 2015; 62: 25-37https://doi.org/10.1016/j.jhep.2015.02.023

    • Choi J.Y.
    • Muallem D.
    • Kiselyov K.
    • Lee M.G.
    • Thomas P.J.
    • Muallem S.

    Aberrant CFTR-dependent HCO3- transport in mutations associated with cystic fibrosis.

    Nature. 2001; 410: 94-97https://doi.org/10.1038/35065099

    • Matton A.P.M.
    • Vries Y de
    • Burlage L.C.
    • Rijn R van
    • Fujiyoshi M.
    • Meijer VE de
    • et al.

    Biliary Bicarbonate, pH, and Glucose Are Suitable Biomarkers of Biliary Viability During Ex Situ Normothermic Machine Perfusion of Human Donor Livers.

    Transplantation. 2019; 103: 1405-1413https://doi.org/10.1097/TP.0000000000002500

    • Klier M.
    • Jamali S.
    • Ames S.
    • Schneider H.P.
    • Becker H.M.
    • Deitmer J.W.

    Catalytic activity of human carbonic anhydrase isoform IX is displayed both extra- and intracellularly.

    FEBS J. 2016; 283: 191-200https://doi.org/10.1111/febs.13562

    • Hamm L.L.
    • Nakhoul N.
    • Hering-Smith K.S.

    Acid-base homeostasis.

    Clin J Am Soc Nephrol. 2015; 10: 2232-2242https://doi.org/10.2215/CJN.07400715

    • Purkerson J.M.
    • Schwartz G.J.

    The role of carbonic anhydrases in renal physiology.

    Kidney Int. 2007; 71: 103-115https://doi.org/10.1038/sj.ki.5002020

    • Purkerson J.M.
    • Kittelberger A.M.
    • Schwartz G.J.

    Basolateral carbonic anhydrase IV in the proximal tubule is a glycosylphosphatidylinositol-anchored protein.

    Kidney Int. 2007; 71: 407-416https://doi.org/10.1038/sj.ki.5002071

  • Recent advances in our understanding of intercalated cells.

    Curr Opin Nephrol Hypertens. 2005; 14: 480-484https://doi.org/10.1097/01.mnh.0000168390.04520.06

    • Pastor-soler N.
    • Piétrement C.
    • Breton S.

    Role of Acid / Base Transporters in the Male Reproductive Tract and Potential Consequences of Their Malfunction.

    Physiology. 2005; 20: 417-428https://doi.org/10.1152/physiol.00036.2005

    • Wandernoth P.M.
    • Mannowetz N.
    • Szczyrba J.
    • Grannemann L.
    • Wolf A.
    • Becker H.M.
    • et al.

    Normal fertility requires the expression of carbonic anhydrases II and IV in sperm.

    J Biol Chem. 2015; 290: 29202-29216https://doi.org/10.1074/jbc.M115.698597

    • Karhumaa P.
    • Kaunisto K.
    • Parkkila S.
    • Waheed A.
    • Pastoreková S.
    • Pastorek J.
    • et al.

    Expression of the transmembrane carbonic anhydrases, CA IX and CA XII, in the human male excurrent ducts.

    Mol Hum Reprod. 2001; 7: 611-616https://doi.org/10.1093/molehr/7.7.611

    • Lan C.C.
    • Peng C.K.
    • Tang S.E.
    • Huang K.L.
    • Wu C.P.

    Carbonic anhydrase inhibitor attenuates ischemia-reperfusion induced acute lung injury.

    PLoS One. 2017; 12: 1-20https://doi.org/10.1371/journal.pone.0179822

    • Parkkila S.
    • Parkkila A.K.
    • Lehtola J.
    • Reinilä A.
    • Södervik H.J.
    • Rannisto M.
    • et al.

    Salivary carbonic anhydrase protects gastroesophageal mucosa from acid injury.

    Dig Dis Sci. 1997; 42: 1013-1019https://doi.org/10.1023/A:1018889120034

    • Pastorekova S.
    • Parkkila S.
    • Parkkila A.K.
    • Opavsky R.
    • Zelnik V.
    • Saarnio J.
    • et al.

    Carbonic anhydrase IX, MN/CA IX: Analysis of stomach complementary DNA sequence and expression in human and rat alimentary tracts.

    Gastroenterology. 1997; 112: 398-408https://doi.org/10.1053/gast.1997.v112.pm9024293

    • Kivelä A.J.
    • Kivelä J.
    • Saarnio J.
    • Parkkila S.

    Carbonic anhydrases in normal gastrointestinal tract and gastrointestinal tumours.

    World J Gastroenterol. 2005; 11: 155-163https://doi.org/10.3748/wjg.v11.i2.155

    • Harmon G.S.
    • Dumlao D.S.
    • Ng D.T.
    • Barrett K.E.
    • Dennis E.A.
    • Dong H.
    • et al.

    Pharmacological correction of a defect in PPAR-γ signaling ameliorates disease severity in Cftr-deficient mice.

    Nat Med. 2010; 16: 313-318https://doi.org/10.1038/nm.2101

    • Lee M.G.
    • Ohana E.
    • Park H.W.
    • Yang D.
    • Muallem S.

    Molecular mechanism of pancreatic and salivary gland fluid and HCO3- secretion.

    Physiol Rev. 2012; 92: 39-74https://doi.org/10.1152/physrev.00011.2011

    • Ignáth I.
    • Hegyi P.
    • Venglovecz V.
    • Székely C.A.
    • Carr G.
    • Hasegawa M.
    • et al.

    CFTR expression but not Cl- transport is involved in the stimulatory effect of bile acids on apical Cl-/HCO3- exchange activity in human pancreatic duct cells.

    Pancreas. 2009; 38: 921-929https://doi.org/10.1097/MPA.0b013e3181b65d34

  • Carbonic anhydrase isozymes in the human pancreas.

    Dig Liver Dis. 2001; 33: 68-74https://doi.org/10.1016/s1590-8658(01)80138-9

    • Fanjul M.
    • Salvador C.
    • Alvarez L.
    • Cantet S.
    • Hollande E.

    Targeting of carbonic anhydrase IV to plasma membrane is altered in cultured human pancreatic duct cells expressing a mutated (ΔF508) CFTR.

    Eur J Cell Biol. 2002; 81: 437-447https://doi.org/10.1078/0171-9335-00264

    • Ueno Y.
    • Ishii M.
    • Igarashi T.
    • Mano Y.
    • Yahagi K.
    • Kisara N.
    • et al.

    Primary biliary cirrhosis with antibody against carbonic anhydrase II associates with distinct immunological backgrounds.

    Hepatol Res. 2001; 20: 18-27https://doi.org/10.1016/S1386-6346(00)00128-5

    • Zatovicova M.
    • Sedlakova O.
    • Svastova E.
    • Ohradanova A.
    • Ciampor F.
    • Arribas J.
    • et al.

    Ectodomain shedding of the hypoxia-induced carbonic anhydrase IX is a metalloprotease-dependent process regulated by TACE/ADAM17.

    Br J Cancer. 2005; 93: 1267-1276https://doi.org/10.1038/sj.bjc.6602861

    • Saarnio J.
    • Parkkila S.
    • Parkkila A.K.
    • Pastoreková S.
    • Haukipuro K.
    • Pastorek J.
    • et al.

    Transmembrane carbonic anhydrase, MN/CA IX, is a potential biomarker for biliary tumours.

    J Hepatol. 2001; 35: 643-649https://doi.org/10.1016/S0168-8278(01)00193-3

    • Huang W.
    • Jeng Y.
    • Lai H.
    • Fong I.

    Expression of Hypoxic Marker Carbonic Anhydrase IX Predicts Poor Prognosis in Resectable Hepatocellular Carcinoma.

    PLoS One. 2015; 10: 1-14https://doi.org/10.1371/journal.pone.0119181

    • Bi C.
    • Liu M.
    • Rong W.
    • Wu F.
    • Zhang Y.
    • Lin S.
    • et al.

    High Beclin-1 and ARID1A expression corelates with poor survival and high recurrence in intrahepatic cholangiocarcinoma: A histopathological retrospective study.

    BMC Cancer. 2019; 19: 213https://doi.org/10.1186/s12885-019-5429-3

    • Scozzafava A.
    • Supuran C.T.

    Carbonic anhydrase inhibitors. Preparation of potent sulfonamides inhibitors incorporating bile acid tails.

    Bioorganic Med Chem Lett. 2002; 12: 1551-1557https://doi.org/10.1016/S0960-894X(02)00252-4

    • Boone C.D.
    • Tu C.
    • Mckenna R.

    Structural elucidation of the hormonal inhibition mechanism of the bile acid cholate on human carbonic anhydrase II.

    Acta Crystallogr Sect D Biol Crystallogr. 2014; 70: 1758-1763https://doi.org/10.1107/S1399004714007457

    • Milov D.E.
    • Jou W.S.
    • Shireman R.B.
    • Chun P.W.

    The effect of bile salts on carbonic anhydrase.

    Hepatology. 1992; 15: 288-296https://doi.org/10.1002/hep.1840150219

    • Nishita T.
    • Itoh S.
    • Arai S.
    • Ichihara N.
    • Arishima K.

    Measurement of carbonic anhydrase isozyme VI (CA-VI) in swine sera, colostrums, saliva, bile, seminal plasma and tissues.

    Anim Sci J. 2011; 82: 673-678https://doi.org/10.1111/j.1740-0929.2011.00888.x

    • Parkkila S.
    • Parkkila A.K.
    • Juvonen T.
    • Waheed A.
    • Sly W.S.
    • Saarnio J.
    • et al.

    Membrane-bound carbonic anhydrase IV is expressed in the luminal plasma membrane of the human gallbladder epithelium.

    Hepatology. 1996; 24: 1104-1108https://doi.org/10.1053/jhep.1996.v24.pm0008903383

    • Nilsson B.
    • Valantinas J.
    • Hedin L.
    • Friman S.
    • Svanvik J.

    Acetazolamide inhibits stimulated feline liver and gallbladder bicarbonate secretion.

    Acta Physiol Scand. 2002; 174: 117-123https://doi.org/10.1046/j.1365-201X.2002.00929.x

    • Garcia-Marin J.J.
    • Dumont M.
    • Corbic M.
    • de Couet G.
    • Erlinger S.

    Effect of acid-base balance and acetazolamide on ursodeoxycholate-induced biliary bicarbonate secretion.

    Am J Physiol. 1985; 248: G20-G27https://doi.org/10.1152/ajpgi.1985.248.1.G20

    • Sly W.
    • Hewett-Emmett D.
    • Whyte M.
    • Yu Y.
    • Tashian R.

    Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification.

    Proc Natl Acad Sci U S A. 1983; 80: 2752-2756https://doi.org/10.1073/pnas.80.9.2752

  • Renal tubular acidosis and autoimmune liver disease.

    Gut. 1971; 12: 153-157https://doi.org/10.1136/gut.12.2.153

    • Parés A.
    • Rimola A.
    • Bruguera M.
    • Mas E.
    • Rodés J.

    Renal tubular acidosis in primary biliary cirrhosis.

    Gastroenterology. 1981; 80: 681-686https://doi.org/10.1016/0016-5085(81)90125-6

    • Goutaudier V.
    • Szwarc I.
    • Serre J.E.
    • Pageaux G.P.
    • Argilés À.
    • Ribstein J.

    Primary sclerosing cholangitis: A new cause of distal renal tubular acidosis.

    Clin Kidney J. 2016; 9: 811-813https://doi.org/10.1093/ckj/sfw085

    • Scheiner B.
    • Lindner G.
    • Reiberger T.
    • Schneeweiss B.
    • Trauner M.
    • Zauner C.
    • et al.

    Acid-base disorders in liver disease.

    J Hepatol. 2017; 67: 1062-1073https://doi.org/10.1016/j.jhep.2017.06.023

    • Bagnis C.
    • Marshansky V.
    • Breton S.
    • Brown D.

    Remodeling the cellular profile of collecting ducts by chronic carbonic anhydrase inhibition.

    Am J Physiol – Ren Physiol. 2001; 280: 437-448https://doi.org/10.1152/ajprenal.2001.280.3.F437

    • Leppilampi M.
    • Parkkila S.
    • Karttunen T.
    • Gut M.O.
    • Gros G.
    • Sjoblom M.

    Carbonic anhydrase isozyme-II-deficient mice lack the duodenal bicarbonate secretory response to prostaglandin E2.

    Proc Natl Acad Sci U S A. 2005; 102: 15247-15252https://doi.org/10.1073/pnas.0508007102

    • Sjöblom M.
    • Singh A.K.
    • Zheng W.
    • Wang J.
    • Tuo B.G.
    • Krabbenhöft A.
    • et al.

    Duodenal acidity “sensing” but not epithelial HCO3- supply is critically dependent on carbonic anhydrase II expression.

    Proc Natl Acad Sci U S A. 2009; 106: 13094-13099https://doi.org/10.1073/pnas.0901488106

    • Pan P.
    • Leppilampi M.
    • Pastorekova S.
    • Pastorek J.
    • Waheed A.
    • Sly W.S.
    • et al.

    Carbonic anhydrase gene expression in CA II-deficient (Car2-/-) and CAIX-deficient (Car9-/-) mice.

    J Physiol. 2006; 571: 319-327https://doi.org/10.1113/jphysiol.2005.102590

    • Lee M.
    • Vecchio-Pagán B.
    • Sharma N.
    • Waheed A.
    • Li X.
    • Raraigh K.S.
    • et al.

    Loss of carbonic anhydrase XII function in individuals with elevated sweat chloride concentration and pulmonary airway disease.

    Hum Mol Genet. 2016; 25: 1923-1933https://doi.org/10.1093/hmg/ddw065

    • Hong J.H.
    • Muhammad E.
    • Zheng C.
    • Hershkovitz E.
    • Alkrinawi S.
    • Loewenthal N.
    • et al.

    Essential role of carbonic anhydrase XII in secretory gland fluid and HCO3- secretion revealed by disease causing human mutation.

    J Physiol. 2015; 593: 5299-5312https://doi.org/10.1113/JP271378

    • Diez-Fernandez C.
    • Rüfenacht V.
    • Santra S.
    • Lund A.M.
    • Santer R.
    • Lindner M.
    • et al.

    Defective hepatic bicarbonate production due to carbonic anhydrase VA deficiency leads to early-onset life-threatening metabolic crisis.

    Genet Med. 2016; 18: 991-1000https://doi.org/10.1038/gim.2015.201

    • Baghdasaryan A.
    • Claudel T.
    • Gumhold J.
    • Silbert D.
    • Adorini L.
    • Roda A.
    • et al.

    Dual Farnesoid X Receptor/TGR5 Agonist INT-767 Reduces Liver Injury in the Mdr2−/− (Abcb4−/−) Mouse Cholangiopathy Model by Promoting Biliary HCO3- Output.

    Hepatology. 2011; 54: 1303-1312https://doi.org/10.1002/hep.24537

    • Rosenthal S.B.
    • Bush K.T.
    • Nigam S.K.

    A Network of SLC and ABC Transporter and DME Genes Involved in Remote Sensing and Signaling in the Gut-Liver-Kidney Axis.

    Sci Rep. 2019; 9: 1-19https://doi.org/10.1038/s41598-019-47798-x

    • Shcheynikov N.
    • Wang Y.
    • Park M.
    • Ko S.B.H.
    • Dorwart M.
    • Naruse S.
    • et al.

    Coupling modes and stoichiometry of Cl-/HCO3- exchange by slc26a3 and slc26a6.

    J Gen Physiol. 2006; 127: 511-524https://doi.org/10.1085/jgp.200509392

  • Structure, function, and regulation of the SLC4 NBCe1 transporter and its role in causing proximal renal tubular acidosis.

    Curr Opin Nephrol Hypertens. 2013; 22: 572-583https://doi.org/10.1097/MNH.0b013e328363ff43

    • Felder R.A.
    • Jose P.A.
    • Xu P.
    • Gildea J.J.

    The Renal Sodium Bicarbonate Cotransporter NBCe2: Is It a Major Contributor to Sodium and pH Homeostasis?.

    Curr Hypertens Rep. 2016; 18: 1-9https://doi.org/10.1007/s11906-016-0679-9

    • Guo Y.
    • Liu Y.
    • Liu M.
    • Wang J.
    • Xie Z.
    • Chen K.
    • et al.

    Na+/HCO3- Cotransporter NBCn2 Mediates HCO3- Reclamation in the Apical Membrane of Renal Proximal Tubules.

    J Am Soc Nephrol. 2017; 28 ()https://doi.org/10.1681/ASN.2016080930

    • Wang T.
    • Hropot M.
    • Aronson P.S.
    • Giebisch G.

    Role of NHE isoforms in mediating bicarbonate reabsorption along the nephron.

    Am J Physiol – Ren Physiol. 2001; 281: 1117-1122https://doi.org/10.1152/ajprenal.2001.281.6.f1117

    • Liu Y.
    • Wang D.-K.
    • Chen L.-M.

    The Physiology of Bicarbonate Transporters in Mammalian Reproduction.

    Biol Reprod. 2012; 86: 1-13https://doi.org/10.1095/biolreprod.111.096826

    • Tang X.X.
    • Ostedgaard L.S.
    • Hoegger M.J.
    • Moninger T.O.
    • Karp P.H.
    • Mcmenimen J.D.
    • et al.

    Acidic pH increases airway surface liquid viscosity in cystic fibrosis.

    J Clin Invest. 2016; 126: 879-891https://doi.org/10.1172/JCI83922

    • Shah V.S.
    • Meyerholz D.K.
    • Tang X.X.
    • Reznikov L.
    • Alaiwa M.A.
    • Ernst S.E.
    • et al.

    Airway acidification initiates host defense abnormalities in cystic fibrosis mice.

    Science. 2016; 351: 503-507https://doi.org/10.1126/science.aad5589

    • Chen E.Y.T.
    • Yang N.
    • Quinton P.M.
    • Chin W.C.

    A new role for bicarbonate in mucus formation.

    Am J Physiol – Lung Cell Mol Physiol. 2010; 299: 542-549https://doi.org/10.1152/ajplung.00180.2010

    • Cooper J.L.
    • Quinton P.M.
    • Ballard S.T.

    Mucociliary transport in porcine trachea: Differential effects of inhibiting chloride and bicarbonate secretion.

    Am J Physiol – Lung Cell Mol Physiol. 2013; 304: 184-190https://doi.org/10.1152/ajplung.00143.2012

    • Shan J.
    • Liao J.
    • Huang J.
    • Robert R.
    • Palmer M.L.
    • Fahrenkrug S.C.
    • et al.

    Bicarbonate-dependent chloride transport drives fluid secretion by the human airway epithelial cell line Calu-3.

    J Physiol. 2012; 590: 5273-5297https://doi.org/10.1113/jphysiol.2012.236893

    • Kim D.
    • Huang J.
    • Billet A.
    • Abu-Arish A.
    • Goepp J.
    • Matthes E.
    • et al.

    Pendrin mediates bicarbonate secretion and enhances cystic fibrosis transmembrane conductance regulator function in airway surface epithelia.

    Am J Respir Cell Mol Biol. 2019; 60: 705-716https://doi.org/10.1165/rcmb.2018-0158OC

    • Fischer H.
    • Widdicombe J.H.

    Mechanisms of acid and base secretion by the airway epithelium.

    J Membr Biol. 2006; 211: 139-150https://doi.org/10.1007/s00232-006-0861-0

    • Gawenis L.R.
    • Ledoussal C.
    • Judd L.M.
    • Prasad V.
    • Alper S.L.
    • Stuart-Tilley A.
    • et al.

    Mice with a targeted disruption of the AE2 Cl-/HCO3- exchanger are achlorhydric.

    J Biol Chem. 2004; 279: 30531-30539https://doi.org/10.1074/jbc.M403779200

    • Recalde S.
    • Muruzábal F.
    • Looije N.
    • Kunne C.
    • Burrell M.A.
    • Sáez E.
    • et al.

    Inefficient chronic activation of parietal cells in Ae2a,b-/- mice.

    Am J Pathol. 2006; 169: 165-176https://doi.org/10.2353/ajpath.2006.051096

    • Petrovic S.
    • Ju X.
    • Barone S.
    • Seidler U.
    • Alper S.L.
    • Lohi H.
    • et al.

    Identification of a basolateral Cl-/HCO3- exchanger specific to gastric parietal cells.

    Am J Physiol – Gastrointest Liver Physiol. 2003; 284: 1093-1103https://doi.org/10.1152/ajpgi.00454.2002

    • Walker N.M.
    • Simpson J.E.
    • Brazill J.M.
    • Gill R.K.
    • Dudeja P.K.
    • Schweinfest C.W.
    • et al.

    Role of Down-Regulated in Adenoma Anion Exchanger in HCO3- Secretion Across Murine Duodenum.

    Gastroenterology. 2009; 136: 893-901https://doi.org/10.1053/j.gastro.2008.11.016

    • Wang Z.
    • Wang T.
    • Petrovic S.
    • Tuo B.
    • Riederer B.
    • Barone S.
    • et al.

    Renal and intestinal transport defects in Slc26a6-null mice.

    Am J Physiol – Cell Physiol. 2005; 288: 957-965https://doi.org/10.1152/ajpcell.00505.2004

    • Jacob P.
    • Christiani S.
    • Rossmann H.
    • Lamprecht G.
    • Vleillard-Baron D.
    • Müller R.
    • et al.

    Role of Na+ HCO3− cotransporter NBC1, Na+/H+ exchanger NHE1, and carbonic anhydrase in rabbit duodenal bicarbonate secretion.

    Gastroenterology. 2000; 119: 406-419https://doi.org/10.1053/gast.2000.9358

    • Pak B.
    • Hong S.
    • Pak H.
    • Hong S.

    Effects of Acetazolamide and Acid-Base Changes on Biliary and Pancreatic Secretion.

    Am J Physiol. 1966; 210: 624-628https://doi.org/10.1152/ajplegacy.1966.210.3.624

    • Dyck W.P.
    • Hightower N.C.
    • Janowitz H.D.

    Effect of Acetazolamide on Human Pancreatic Secretion.

    Gastroenterology. 1972; 62: 547-552https://doi.org/10.1016/S0016-5085(72)80037-4

    • Banales J.M.
    • Prieto J.
    • Medina J.F.

    Cholangiocyte anion exchange and biliary bicarbonate excretion.

    World J Gastroenterol. 2006; 12: 3496-3511https://doi.org/10.3748/wjg.v12.i22.3496

    • Concepcion A.R.
    • Lopez M.
    • Ardura-Fabregat A.
    • Medina J.F.

    Role of AE2 for pHi regulation in biliary epithelial cells.

    Front Physiol. 2014; 4: 1-7https://doi.org/10.3389/fphys.2013.00413

    • Martínez-Ansó E.
    • Castillo J.
    • Díez J.
    • Medina J.
    • J P

    Immunohistochemical Detection of Chloride/Bicarbonate Anion Exchangers in Human Liver.

    Hepatology. 1994; 19: 1400-1406

    • Spirli C.
    • Granato A.
    • Zsembery A.
    • Anglani F.
    • Okolicsanyi L.
    • LaRusso N.F.
    • et al.

    Functional polarity of Na+/H+ and Cl-/HCO3- exchangers in a rat cholangiocyte cell line.

    Am J Physiol Gastrointest Liver Physiol. 1998; 275: G1236-1245https://doi.org/10.1152/ajpgi.1998.275.6.G1236

    • Stewart A.K.
    • Chernova M.N.
    • Shmukler B.E.
    • Wilhelm S.
    • Alper S.L.

    Regulation of AE2-mediated Cl- transport by intracellular or by extracellular pH requires highly conserved amino acid residues of the AE2 NH2-terminal cytoplasmic domain.

    J Gen Physiol. 2002; 120: 707-722https://doi.org/10.1085/jgp.20028641

    • Stewart A.K.
    • Chernova M.N.
    • Kunes Y.Z.
    • Alper S.L.

    Regulation of AE2 anion exchanger by intracellular pH: Critical regions of the NH2-terminal cytoplasmic domain.

    Am J Physiol – Cell Physiol. 2001; 281: 1344-1354https://doi.org/10.1152/ajpcell.2001.281.4.c1344

  • New insights into cholangiocyte physiology.

    J Hepatol. 1997; 27: 945-952https://doi.org/10.1016/S0168-8278(97)80338-8

    • Uriarte I.
    • Banales J.M.
    • Śaez E.
    • Arenas F.
    • Elferink R.P.J.O.
    • Prieto J.
    • et al.

    Bicarbonate secretion of mouse cholangiocytes involves Na+ -HCO3- cotransport in addition to Na+ -independent Cl-/HCO3- exchange.

    Hepatology. 2010; 51: 891-902https://doi.org/10.1002/hep.23403

    • Abuladze N.
    • Pushkin A.
    • Tatishchev S.
    • Newman D.
    • Sassani P.
    • Kurtz I.

    Expression and localization of rat NBC4c in liver and renal uroepithelium.

    Am J Physiol – Cell Physiol. 2004; 287: 781-789https://doi.org/10.1152/ajpcell.00590.2003

    • Al-Atabi M.
    • Ooi R.C.
    • Luo X.Y.
    • Chin S.B.
    • Bird N.C.

    Computational analysis of the flow of bile in human cystic duct.

    Med Eng Phys. 2012; 34: 1177-1183https://doi.org/10.1016/j.medengphy.2011.12.006

  • Bile Formation and Secretion.

    Compr Physiol. 2013; 3: 1035-1078https://doi.org/10.1002/cphy.c120027.Bile

    • Tabibian J.H.
    • Masyuk A.I.
    • Masyuk T.V.
    • Hara S.P.O.
    • Larusso N.F.

    Physiology of Cholangiocytes.

    Compr Physiol. 2013; 3: 1-49https://doi.org/10.1002/cphy.c120019

    • Strazzabosco M.
    • Joplin R.
    • Zsembery À.
    • Wallace L.
    • Spirlì C.
    • Fabris L.
    • et al.

    Na+ -dependent and -independent Cl-/HCO3- exchange mediate cellular HCO3- transport in cultured human intrahepatic bile duct cells.

    Hepatology. 1997; 25: 976-985https://doi.org/10.1002/hep.510250431

    • Hübner C.
    • Stremmel W.
    • Elsing C.

    Sodium, hydrogen exchange type 1 and bile ductular secretory activity in the guinea pig.

    Hepatology. 2000; 31: 562-571https://doi.org/10.1002/hep.510310303

    • Mennone A.
    • Biemesderfer D.
    • Negoianu D.
    • Yang C.L.
    • Abbiati T.
    • Schultheis P.J.
    • et al.

    Role of sodium/hydrogen exchanger isoform NHE3 in fluid secretion and absorption in mouse and rat cholangiocytes.

    Am J Physiol – Gastrointest Liver Physiol. 2001; 280: 247-254https://doi.org/10.1152/ajpgi.2001.280.2.g247

    • Marteau C.
    • Sastre B.
    • Iconomidis N.
    • Portugal H.
    • Pauli A.‐M.
    • Gérolami A.

    pH regulation in human gallbladder bile: Study in patients with and without gallstones.

    Hepatology. 1990; 11: 997-1002https://doi.org/10.1002/hep.1840110614

    • Piermarini P.M.
    • Kim E.Y.
    • Boron W.F.

    Evidence against a direct interaction between intracellular carbonic anhydrase II and pure C-terminal domains of SLC4 bicarbonate transporters.

    J Biol Chem. 2007; 282: 1409-1421https://doi.org/10.1074/jbc.M608261200

    • Al-Samir S.
    • Papadopoulos S.
    • Scheibe R.J.
    • Meißner J.D.
    • Cartron J.P.
    • Sly W.S.
    • et al.

    Activity and distribution of intracellular carbonic anhydrase II and their effects on the transport activity of anion exchanger AE1/SLC4A1.

    J Physiol. 2013; 591: 4963-4982https://doi.org/10.1113/jphysiol.2013.251181

    • Li X.
    • Liu Y.
    • Alvarez B.V.
    • Casey J.R.
    • Fliegel L.

    A novel carbonic anhydrase II binding site regulates NHE1 activity.

    Biochemistry. 2006; 45: 2414-2424https://doi.org/10.1021/bi051132d

    • Vince J.W.
    • Reithmeier R.A.F.

    Identification of the carbonic anhydrase II binding site in the Cl-/HCO3- anion exchanger AE1.

    Biochemistry. 2000; 39: 5527-5533https://doi.org/10.1021/bi992564p

    • Dahl N.K.
    • Jiang L.
    • Chernova M.N.
    • Stuart-Tilley A.K.
    • Shmukler B.E.
    • Alper S.L.

    Deficient HCO3- Transport in an AE1 Mutant with Normal Cl- Transport Can be Rescued by Carbonic Anhydrase II Presented on an Adjacent AE1 Protomer.

    J Biol Chem. 2003; 278: 44949-44958https://doi.org/10.1074/jbc.M308660200

    • Sterling D.
    • Reithmeier R.A.F.
    • Casey J.R.

    A Transport metabolon : Functional interaction of carbonic anhydrase II and chloride / bicarbonate exchangers.

    J Biol Chem. 2001; 276: 47886-47894https://doi.org/10.1074/jbc.M105959200

    • Morgan P.E.
    • Pastoreková S.
    • Stuart-Tilley A.K.
    • Alper S.L.
    • Casey J.R.

    Interactions of transmembrane carbonic anhydrase, CAIX, with bicarbonate transporters.

    Am J Physiol Cell Physiol. 2007; 293: C738-C748https://doi.org/10.1152/ajpcell.00157.2007

    • Svastova E.
    • Witarski W.
    • Csaderova L.
    • Kosik I.
    • Skvarkova L.
    • Hulikova A.
    • et al.

    Carbonic anhydrase IX interacts with bicarbonate transporters in lamellipodia and increases cell migration via its catalytic domain.

    J Biol Chem. 2012; 287: 3392-3402https://doi.org/10.1074/jbc.M111.286062

    • Schueler C.
    • Becker H.M.
    • McKenna R.
    • Deitmer J.W.

    Transport activity of the sodium bicarbonate cotransporter NBCe1 is enhanced by different isoforms of carbonic anhydrase.

    PLoS One. 2011; 6e27167https://doi.org/10.1371/journal.pone.0027167

    • Gross E.
    • Pushkin A.
    • Abuladze N.
    • Fedotoff O.
    • Kurtz I.

    Regulation of the sodium bicarbonate cotransporter kNBC1 function: Role of Asp986, Asp988 and kNBC1-carbonic anhydrase II binding.

    J Physiol. 2002; 544: 679-685https://doi.org/10.1113/jphysiol.2002.029777

    • Wang Y.
    • Cohen J.
    • Boron W.F.
    • Schulten K.
    • Tajkhorshid E.

    Exploring gas permeability of cellular membranes and membrane channels with molecular dynamics.

    J Struct Biol. 2007; 157: 534-544https://doi.org/10.1016/j.jsb.2006.11.008

  • Mechanisms of bicarbonate secretion: Lessons from the airways.

    Cold Spring Harb Perspect Med. 2012; 2: 1-11https://doi.org/10.1101/cshperspect.a015016

  • Transepithelial bicarbonate secretion: Lessons from the pancreas.

    Cold Spring Harb Perspect Med. 2012; 2: a009571https://doi.org/10.1101/cshperspect.a009571

    • Poulsen J.H.
    • Fischer H.
    • Illek B.
    • Machen T.E.

    Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator.

    Proc Natl Acad Sci U S A. 1994; 91: 5340-5344https://doi.org/10.1073/pnas.91.12.5340

    • Kim Y.
    • Jun I.
    • Shin D.H.
    • Yoon J.G.
    • Piao H.
    • Jung J.
    • et al.

    Regulation of CFTR Bicarbonate Channel Activity by WNK1: Implications for Pancreatitis and CFTR-Related Disorders.

    Cmgh. 2020; 9: 79-103https://doi.org/10.1016/j.jcmgh.2019.09.003

    • Shcheynikov N.
    • Son A.
    • Hong J.H.
    • Yamazaki O.
    • Ohana E.
    • Kurtz I.
    • et al.

    Intracellular Cl- as a signaling ion that potently regulates Na+/HCO3- Transporters.

    Proc Natl Acad Sci U S A. 2015; 112: E329-E337https://doi.org/10.1073/pnas.1415673112

  • Duodenal chemosensing and mucosal defenses.

    Digestion. 2011; 83: 25-31https://doi.org/10.1159/000323401

    • Pastor-Soler N.
    • Beaulieu V.
    • Litvin T.N.
    • Da Silva N.
    • Chen Y.
    • Brown D.
    • et al.

    Bicarbonate-regulated adenylyl cyclase (sAC) is a sensor that regulates pH-dependent V-ATPase recycling.

    J Biol Chem. 2003; 278: 49523-49529https://doi.org/10.1074/jbc.M309543200

    • Pǎunescu T.G.
    • Da Silva N.
    • Russo L.M.
    • McKee M.
    • Lu H.A.J.
    • Breton S.
    • et al.

    Association of soluble adenylyl cyclase with the V-ATPase in renal epithelial cells.

    Am J Physiol – Ren Physiol. 2008; 294: 130-138https://doi.org/10.1152/ajprenal.00406.2007

    • Mardones P.
    • Chang J.C.
    • Oude Elferink RPJ

    Cyclic AMP and alkaline pH downregulate carbonic anhydrase 2 in mouse fibroblasts.

    Biochim Biophys Acta – Gen Subj. 2014; 1840: 1765-1770https://doi.org/10.1016/j.bbagen.2013.12.015

    • Wang Y.
    • Lam C.S.
    • Wu F.
    • Wang W.
    • Duan Y.
    • Huang P.

    Regulation of CFTR channels by HCO3- -sensitive soluble adenylyl cyclase in human airway epithelial cells.

    Am J Physiol – Cell Physiol. 2005; 289: 1145-1151https://doi.org/10.1152/ajpcell.00627.2004

    • Barnea G.
    • Silvennoinen O.
    • Shaanan B.
    • Honegger A.M.
    • Canoll P.D.
    • D’Eustachio P.
    • et al.

    Identification of a carbonic anhydrase-like domain in the extracellular region of RPTP gamma defines a new subfamily of receptor tyrosine phosphatases.

    Mol Cell Biol. 1993; 13: 1497-1506https://doi.org/10.1128/mcb.13.3.1497

    • Zhou Y.
    • Skelton L.A.
    • Xu L.
    • Chandler M.P.
    • Berthiaume J.M.
    • Boron W.F.

    Role of Receptor Protein Tyrosine Phosphatase γ in Sensing Extracellular CO2 and HCO3−.

    J Am Soc Nephrol. 2016; 27: 2616-2621https://doi.org/10.1681/asn.2015040439

    • Boedtkjer E.
    • Hansen K.B.
    • Boedtkjer D.M.B.
    • Aalkjaer C.
    • Boron W.F.

    Extracellular HCO3- is sensed by mouse cerebral arteries: Regulation of tone by receptor protein tyrosine phosphatase γ.

    J Cereb Blood Flow Metab. 2015; 36: 965-980https://doi.org/10.1177/0271678X15610787

  • Role of carbonic anhydrases and inhibitors in acid–base physiology: Insights from mathematical modeling.

    Int J Mol Sci. 2019; 20https://doi.org/10.3390/ijms20153841

    • Lissandrini D.
    • Vermi W.
    • Vezzalini M.
    • Sozzani S.
    • Facchetti F.
    • Bellone G.
    • et al.

    Receptor-type protein tyrosine phosphatase gamma (PTPgamma), a new identifier for myeloid dendritic cells and specialized macrophages.

    Blood. 2006; 108: 4223-4231https://doi.org/10.1182/blood-2006-05-024257

    • Nandi S.
    • Cioce M.
    • Yeung Y.G.
    • Nieves E.
    • Tesfa L.
    • Lin H.
    • et al.

    Receptor-type protein-tyrosine phosphatase ζ is a functional receptor for interleukin-34.

    J Biol Chem. 2013; 288: 21972-21986https://doi.org/10.1074/jbc.M112.442731

    • Cohen S.
    • Shoshana O.
    • Zelman-Toister E.
    • Maharshak N.
    • Binsky-Ehrenreich I.
    • Gordin M.
    • et al.

    The cytokine midkine and its receptor RPTPζ regulate B cell survival in a pathway induced by CD74.

    J Immunol. 2012; 188: 259-269https://doi.org/10.4049/jimmunol.1101468

    • Waldmann R.
    • Champigny G.
    • Bassilana F.
    • Heurteaux C.
    • Lazdunski M.

    A proton-gated cation channel involved in acid-sensing.

    Nature. 1997; 386: 173-177https://doi.org/10.1038/386173a0

    • Dong X.
    • Ko K.H.
    • Chow J.
    • Tuo B.
    • Barrett K.E.
    • Dong H.

    Expression of acid-sensing ion channels in intestinal epithelial cells and their role in the regulation of duodenal mucosal bicarbonate secretion.

    Acta Physiol. 2011; 201: 97-107https://doi.org/10.1111/j.1748-1716.2010.02207.x

    • Voilley N.
    • de Weille J.
    • Mamet J.
    • Lazdunski M.

    Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors.

    J Neurosci. 2001; 21: 8026-8033https://doi.org/10.1523/JNEUROSCI.21-20-08026.2001

    • Su X.
    • Li Q.
    • Shrestha K.
    • Cormet-Boyaka E.
    • Chen L.
    • Smith P.R.
    • et al.

    Interregulation of proton-gated Na+ channel 3 and cystic fibrosis transmembrane conductance regulator.

    J Biol Chem. 2006; 281: 36960-36968https://doi.org/10.1074/jbc.M608002200

    • Chang J.C.
    • Go S.
    • de Waart D.R.
    • Munoz-Garrido P.
    • Beuers U.
    • Paulusma C.C.
    • et al.

    Soluble Adenylyl Cyclase Regulates Bile Salt-Induced Apoptosis in Human Cholangiocytes.

    Hepatology. 2016; 64: 522-534https://doi.org/10.1002/hep.28550

    • Chang J.C.
    • Beuers U.
    • Elferink R.P.J.O.

    The Emerging Role of Soluble Adenylyl Cyclase in Primary Biliary Cholangitis.

    Dig Dis. 2017; 35: 217-223https://doi.org/10.1159/000450914

    • Michelotti G.A.
    • Tucker A.
    • Swiderska-Syn M.
    • Machado M.V.
    • Choi S.S.
    • Kruger L.
    • et al.

    Pleiotrophin regulates the ductular reaction by controlling the migration of cells in liver progenitor niches.

    Gut. 2016; 65: 683-692https://doi.org/10.1136/gutjnl-2014-308176

    • Moratti E.
    • Vezzalini M.
    • Tomasello L.
    • Giavarina D.
    • Sorio C.

    Identification of protein tyrosine phosphatase receptor gamma extracellular domain (sPTPRG) as a natural soluble protein in plasma.

    PLoS One. 2015; 10e0119110https://doi.org/10.1371/journal.pone.0119110

    • Brenachot X.
    • Ramadori G.
    • Ioris R.M.
    • Veyrat-Durebex C.
    • Altirriba J.
    • Aras E.
    • et al.

    Hepatic protein tyrosine phosphatase receptor gamma links obesity-induced inflammation to insulin resistance.

    Nat Commun. 2017; 8: 1820https://doi.org/10.1038/s41467-017-02074-2

    • Wiemuth D.
    • Sahin H.
    • Falkenburger B.H.
    • Lefèvre C.M.T.
    • Wasmuth H.E.
    • Gründer S.

    BASIC – A bile acid-sensitive ion channel highly expressed in bile ducts.

    FASEB J. 2012; 26: 4122-4130https://doi.org/10.1096/fj.12-207043

    • Wiemuth D.
    • Sahin H.
    • Lefèvre C.M.T.
    • Wasmuth H.E.
    • Gründer S.

    Strong activation of bile acid-sensitive ion channel (BASIC) by ursodeoxycholic acid.

    Channels. 2013; 7: 38-42https://doi.org/10.4161/chan.22406

    • Schmidt A.
    • Lenzig P.
    • Oslender-Bujotzek A.
    • Kusch J.
    • Lucas S.D.
    • Gründer S.
    • et al.

    The Bile Acid-Sensitive Ion Channel (BASIC) Is activated by alterations of its membrane environment.

    PLoS One. 2014; 9: e111549https://doi.org/10.1371/journal.pone.0111549

    • Rudic J.S.
    • Poropat G.
    • Krstic M.N.
    • Bjelakovic G.
    • Gluud C.

    Ursodeoxycholic acid for primary biliary cirrhosis.

    Cochrane Database Syst Rev. 2012; https://doi.org/10.1002/14651858.CD000551.pub3

    • Poropat G.
    • Giljaca V.
    • Stimac D.
    • Gluud C.

    Bile acids for primary sclerosing cholangitis.

    Cochrane Database Syst Rev. 2011; https://doi.org/10.1002/14651858.CD003626.pub2

    • Lindor K.D.
    • Kowdley K.V.
    • Luketic V.A.C.
    • Harrison M.E.
    • McCashland T.
    • Befeler A.S.
    • et al.

    High-dose ursodeoxycholic acid for the treatment of primary sclerosing cholangitis.

    Hepatology. 2009; 50: 808-814https://doi.org/10.1002/hep.23082

    • Maurel P.
    • Rauch U.
    • Flad M.
    • Margolis R.K.
    • Margolis R.U.

    Phosphacan, a chondroitin sulfate proteoglycan of brain that interacts with neurons and neural cell-adhesion molecules, is an extracellular variant of a receptor-type protein tyrosine phosphatase.

    Proc Natl Acad Sci U S A. 1994; 91: 2512-2516https://doi.org/10.1073/pnas.91.7.2512

    • Lee H.
    • Yi J.S.
    • Lawan A.
    • Min K.
    • Bennett A.M.

    Mining the function of protein tyrosine phosphatases in health and disease.

    Semin Cell Dev Biol. 2015; 37: 66-72https://doi.org/10.1016/j.semcdb.2014.09.021

  • Significance of pH regulation and carbonic anhydrases in tumour progression and implications for diagnostic and therapeutic approaches.

    BJU Int. 2008; 101: 16-21https://doi.org/10.1111/j.1464-410X.2008.07643.x

    • Mboge M.Y.
    • Mahon B.P.
    • McKenna R.
    • Frost S.C.

    Carbonic anhydrases: Role in pH control and cancer.

    Metabolites. 2018; 8: 19https://doi.org/10.3390/metabo8010019

  • Gastrointestinal HCO3- transport and epithelial protection in the gut: New techniques, transport pathways and regulatory pathways.

    Curr Opin Pharmacol. 2013; 13: 900-908https://doi.org/10.1016/j.coph.2013.10.001

    • Inada A.
    • Nienaber C.
    • Katsuta H.
    • Fujitani Y.
    • Levine J.
    • Morita R.
    • et al.

    Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth.

    Proc Natl Acad Sci U S A. 2008; 105 ()https://doi.org/10.1073/pnas.0805803105

    • Fanjul M.
    • Alvarez L.
    • Salvador C.
    • Gmyr V.
    • Kerr-Conte J.
    • Pattou F.
    • et al.

    Evidence for a membrane carbonic anhydrase IV anchored by its C-terminal peptide in normal human pancreatic ductal cells.

    Histochem Cell Biol. 2004; 121: 91-99https://doi.org/10.1007/s00418-003-0616-2

    • Kivelä A.J.
    • Parkkila S.
    • Saarnio J.
    • Karttunen T.J.
    • Kivelä J.
    • Parkkila A.K.
    • et al.

    Expression of transmembrane carbonic anhydrase isoenzymes IX and XII in normal human pancreas and pancreatic tumours.

    Histochem Cell Biol. 2000; 114: 197-204https://doi.org/10.1007/s004180000181

    • Parkkila S.
    • Parkkila A.K.
    • Juvonen T.
    • Rajaniemi H.

    Distribution of the carbonic anhydrase isoenzymes I, II, and VI in the human alimentary tract.

    Gut. 1994; 35: 646-650https://doi.org/10.1136/gut.35.5.646

    • Shcheynikov N.
    • Yang D.
    • Wang Y.
    • Zeng W.
    • Karniski L.P.
    • So I.
    • et al.

    The Slc26a4 transporter functions as an electroneutral Cl-/ I-/HCO3- exchanger: Role of Slc26a4 and Slc26a6 in I- and HCO3- secretion and in regulation of CFTR in the parotid duct.

    J Physiol. 2008; 586: 3813-3824https://doi.org/10.1113/jphysiol.2008.154468

  • The structure and function of carbonic anhydrase isozymes in the respiratory system of vertebrates.

    Respir Physiol Neurobiol. 2006; 154: 185-198https://doi.org/10.1016/j.resp.2006.03.007

    • Leinonen J.S.
    • Saari K.A.
    • Seppänen J.M.
    • Myllylä H.M.
    • Rajaniemi H.J.

    Immunohistochemical demonstration of carbonic anhydrase isoenzyme VI (CA VI) expression in rat lower airways and lung.

    J Histochem Cytochem. 2004; 52: 1107-1112https://doi.org/10.1369/jhc.4A6282.2004

  • Role of CFTR in epithelial physiology.

    Cell Mol Life Sci. 2017; 74: 93-115https://doi.org/10.1007/s00018-016-2391-y

    • Skelton L.A.
    • Boron W.F.
    • Zhou Y.

    Acid-base transport by the renal proximal tubule.

    J Nephrol. 2010; 23: 1-25

  • SLC26 Cl-/HCO3- exchangers in the kidney: Roles in health and disease.

    Kidney Int. 2013; 84: 657-666https://doi.org/10.1038/ki.2013.138

    • Aizarani N.
    • Saviano A.
    • Sagar
    • Mailly L.
    • Durand S.
    • Herman J.S.
    • et al.

    A human liver cell atlas reveals heterogeneity and epithelial progenitors.

    Nature. 2019; 572: 199-204https://doi.org/10.1038/s41586-019-1373-2

    • Hu H.
    • Gehart H.
    • Artegiani B.
    • LÖpez-Iglesias C.
    • Dekkers F.
    • Basak O.
    • et al.

    Long-Term Expansion of Functional Mouse and Human Hepatocytes as 3D Organoids.

    Cell. 2018; 175: 1591-1606https://doi.org/10.1016/j.cell.2018.11.013

  • Source Link

    Related Articles

    Leave a Comment

    This website uses cookies to improve your experience. We will assume you are ok with this, but you can opt-out if you wish. Accept Read More

    %d bloggers like this: