Home Liver Diseases Hepatic steatosis and liver fat contents in liver transplant recipients are associated with serum adipokines and insulin resistance

Hepatic steatosis and liver fat contents in liver transplant recipients are associated with serum adipokines and insulin resistance

Credits to the Source Link Daniel
Hepatic steatosis and liver fat contents in liver transplant recipients are associated with serum adipokines and insulin resistance
  • 1.

    Holmer, M. et al. Nonalcoholic fatty liver disease is an increasing indication for liver transplantation in the Nordic countries. Liver Int. 38(11), 2082–2090 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Kim, D., Touros, A. & Kim, W. R. Nonalcoholic fatty liver disease and metabolic syndrome. Clin. Liver Dis. 22(1), 133–140 (2018).

    PubMed 

    Google Scholar
     

  • 3.

    Kappus, M. & Abdelmalek, M. D. Novo and recurrence of nonalcoholic steatohepatitis after liver transplantation. Clin. Liver Dis. 21(2), 321–335 (2017).

    PubMed 

    Google Scholar
     

  • 4.

    Filipec-Kanizaj, T. et al. Nonalcoholic fatty liver disease and liver transplantation—Where do we stand?. Mikolasevic I World J. Gastroenterol. 24(14), 1491–1506 (2018).

    PubMed 

    Google Scholar
     

  • 5.

    Kim, H. et al. Histologically proven non-alcoholic fatty liver disease and clinically related factors in recipients after liver transplantation. Clin. Transplant. 28(5), 521–529 (2014).

    PubMed 

    Google Scholar
     

  • 6.

    Buzzetti, E., Pinzani, M. & Tsochatzis, E. A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 65(8), 1038–1048 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Schuppan, D. & Schattenberg, J. M. Non-alcoholic steatohepatitis: pathogenesis and novel therapeutic approaches. J. Gastroenterol. Hepatol. 28(Suppl 1), 68–76 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Chascsa, D. M. & Vargas, H. E. The gastroenterologist’s guide to management of the post-liver transplant patient. Am. J. Gastroenterol. 113(6), 819–828 (2018).

    PubMed 

    Google Scholar
     

  • 9.

    Richards, J., Gunson, B., Johnson, J. & Neuberger, J. Weight gain and obesity after liver transplantation. Transpl. Int. 18(4), 461–466 (2005).

    PubMed 

    Google Scholar
     

  • 10.

    Barone, M. et al. Obesity as predictor of postoperative outcomes in liver transplant candidates: Review of the literature and future perspectives. Dig. Liver Dis. 49(9), 957–966 (2017).

    PubMed 

    Google Scholar
     

  • 11.

    Dehghani, S. M. et al. Hyperlipidemia in Iranian liver transplant recipients: prevalence and risk factors. J. Gastroenterol. 42(9), 769–774 (2007).

    PubMed 

    Google Scholar
     

  • 12.

    Jenssen, T. & Hartmann, A. Post-transplant diabetes mellitus in patients with solid organ transplants. Nat. Rev. Endocrinol. 15(3), 172–188 (2019).

    PubMed 

    Google Scholar
     

  • 13.

    Jelenik, T. et al. Mechanisms of insulin resistance in primary and secondary nonalcoholic fatty liver. Diabetes 66, 2241–2253 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Lambert, J. E., Ramos-Roman, M. A., Browning, J. D. & Parks, E. J. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146, 726–735 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Polyzos, S. A., Kountouras, J. & Mantzoros, C. S. Adipokines in nonalcoholic fatty liver disease. Metabolism 65(8), 1062–1079 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Vallin, M. et al. Recurrent or de novo nonalcoholic fatty liver disease after liver transplantation: natural history based on liver biopsy analysis. Liver Transpl. 20(9), 1064–1071 (2014).

    PubMed 

    Google Scholar
     

  • 17.

    Galvin, Z. et al. Predictors of de novo nonalcoholic fatty liver disease after liver transplantation and associated fibrosis. Liver Transpl. 25(1), 56–67 (2019).

    PubMed 

    Google Scholar
     

  • 18.

    Seo, S. et al. De novo nonalcoholic fatty liver disease after liver transplantation. Liver Transpl 13(6), 844–847 (2007).

    PubMed 

    Google Scholar
     

  • 19.

    Birkenfeld, A. L. & Shulman, G. I. Non alcoholic fatty liver disease, hepatic insulin resistance and type 2 diabetes. Hepatology 59(2), 713–723 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Petersen, M. C. & Shulman, G. I. Roles of diacylglycerols and ceramides in hepatic insulin resistance. Trends Pharmacol. Sci. 38(7), 649–665 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Ter Horst, K. W. et al. Hepatic diacylglycerol-associated protein kinase Cε translocation links hepatic steatosis to hepatic insulin resistance in humans. Cell. Rep. 19(10), 1997–2004 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Luukkonen, P. K. et al. Hepatic ceramides dissociate steatosis and insulin resistance in patients with non-alcoholic fatty liver disease. J. Hepatol. 64, 1167–1175 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Alves, T. C. et al. Regulation of hepatic fat and glucose oxidation in rats with lipid-induced hepatic insulin resistance. Hepatology 53, 1175–1181 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Isokuortti, E. et al. Use of HOMA-IR to diagnose non-alcoholic fatty liver disease: a population-based and inter-laboratory study. Diabetologia 60(10), 1873–1882 (2017).

    PubMed 

    Google Scholar
     

  • 25.

    Andrade, A. R. et al. New onset diabetes and non-alcoholic fatty liver disease after liver transplantation. Ann. Hepatol. 16(6), 932–940 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Rudenski, A. S., Matthews, D. R., Levy, J. C. & Turner, R. C. Understanding “insulin resistance”: both glucose resistance and insulin resistance are required to model human diabetes. Metabolism 40, 908–917 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Delgado-Borrego, A. et al. Hepatitis C virus is independently associated with increased insulin resistance after liver transplantation. Transplantation 77(5), 703–710 (2004).

    PubMed 

    Google Scholar
     

  • 28.

    Da Silva Alves, V., Hack Mendes, R. & Pinto Kruel, C. D. Nutritional status, lipid profile and HOMA-IR in post-liver transplant patients. Nutr Hosp 29(5), 1154–1162 (2014).

    PubMed 

    Google Scholar
     

  • 29.

    Martínez-Díaz-Guerra, G. et al. Serum levels of osteocalcin and insulin resistance in patients with impaired glucose tolerance or new-onset diabetes mellitus after liver transplantation. Horm. Metab. Res. 48(5), 325–330 (2016).

    PubMed 

    Google Scholar
     

  • 30.

    Robertson, S. A., Leinninger, G. M. & Myers, M. G. Jr. Molecular and neural mediators of leptin action. Physiol. Behav. 94(5), 637–642 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Zhang, R. et al. Selective inactivation of Socs3 in SF1 neurons improves glucose homeostasis without affecting body weight. Endocrinology 149(11), 5654–5661 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Polyzos, S. A. et al. Circulating leptin in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Diabetologia 59(1), 30–43 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    van der Poorten, D. et al. Hepatic fat loss in advanced nonalcoholic steatohepatitis: are alterations in serum adiponectin the cause?. Hepatology 57(6), 2180–2188 (2013).

    PubMed 

    Google Scholar
     

  • 34.

    Saxena, N. K. & Anania, F. A. Adipocytokines and hepatic fibrosis. Trends Endocrinol. Metab. 26(3), 153–161 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Handy, J. A. et al. Adiponectin activation of AMPK disrupts leptin-mediated hepatic fibrosis via suppressors of cytokine signaling (SOCS-3). J. Cell Biochem. 110(5), 1195–1207 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Watt, K. D. et al. Serum adipokine and inflammatory markers before and after liver transplantation in recipients with major cardiovascular events. Liver Transpl. 20(7), 791–797 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Siddiqui, M. B. et al. The relationship between hypoadiponectinemia and cardiovascular events in liver transplant recipients. Transplantation https://doi.org/10.1097/TP.0000000000002714 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • 38.

    Anastácio, L. R. et al. Adipokines, inflammatory mediators, and insulin-resistance parameters may not be good markers of metabolic syndrome after liver transplant. Nutrition 32(9), 921–927 (2016).

    PubMed 

    Google Scholar
     

  • 39.

    Veldt, B. J. et al. Insulin resistance, serum adipokines and risk of fibrosis progression in patients transplanted for hepatitis C. Am. J. Transplant 9(6), 1406–1413 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    John, B. V. et al. Recipient but not donor adiponectin polymorphisms are associated with early posttransplant hepatic steatosis in patients transplanted for non-nonalcoholic fatty liver disease indications. Exp. Clin. Transplant 16(4), 439–445 (2018).

    PubMed 

    Google Scholar
     

  • 41.

    Shi, K. Q. et al. Controlled attenuation parameter for the detection of steatosis severity in chronic liver disease: A meta-analysis of diagnostic accuracy. J. Gastroenterol. Hepatol. 29, 1149–1158 (2014).

    PubMed 

    Google Scholar
     

  • 42.

    Fujimori, N. et al. Controlled attenuation parameter is correlated with actual hepatic fat
    content in patients with non-alcoholic fatty liver disease with none-to-mild obesity and liver fibrosis. Hepatol. Res. 46(10), 1019–1027 (2016).

    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    de Lédinghen, V., Vergniol, J., Foucher, J., Merrouche, W. & le Bail, B. Non-invasive diagnosis of liver steatosis using controlled attenuation parameter (CAP) and transient elastography. Liver. Int. 32(6), 911–918 (2012).

    PubMed 

    Google Scholar
     

  • 44.

    Karlas, T. et al. Noninvasive characterization of graft steatosis after liver transplantation. Scand. J. Gastroenterol. 50(2), 224–232 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Levy, J. C., Matthews, D. R. & Hermans, M. P. Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 21(12), 2191–2192 (1998).

    CAS 

    Google Scholar
     

  • 46.

    Sasso, M. et al. Controlled attenuation parameter (CAP): a novel VCTE guided ultrasonic attenuation measurement for the evaluation of hepatic steatosis: Preliminary study and validation in a cohort of patients with chronic liver disease from various causes. Ultrasound Med. Biol. 36, 1825–1835 (2010).

    PubMed 

    Google Scholar
     

  • Source Link

    Related Articles

    Leave a Comment

    This website uses cookies to improve your experience. We will assume you are ok with this, but you can opt-out if you wish. Accept Read More

    %d bloggers like this: