Home Hepatitis Gangliosides are essential endosomal receptors for quasi-enveloped and naked hepatitis A virus

Gangliosides are essential endosomal receptors for quasi-enveloped and naked hepatitis A virus

Credits to the Source Link Daniel
Gangliosides are essential endosomal receptors for quasi-enveloped and naked hepatitis A virus
  • 1.

    Zell, R. Picornaviridae—the ever-growing virus family. Arch. Virol 163, 299–317 (2018).

  • 2.

    Feng, Z. et al. A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. Nature 496, 367–371 (2013).

  • 3.

    Hirai-Yuki, A. et al. MAVS-dependent host species range and pathogenicity of human hepatitis A virus. Science 353, 1541–1545 (2016).

  • 4.

    Hirai-Yuki, A., Hensley, L., Whitmire, J. K. & Lemon, S. M. Biliary secretion of quasi-enveloped human hepatitis A virus. mBio 7, e01998-16 (2016).

  • 5.

    Wang, X. et al. Hepatitis A virus and the origins of picornaviruses. Nature 517, 85–88 (2015).

  • 6.

    Rivera-Serrano, E. E., Gonzalez-Lopez, O., Das, A. & Lemon, S. M. Cellular entry and uncoating of naked and quasi-enveloped human hepatoviruses. eLife 8, e43983 (2019).

  • 7.

    Kaplan, G. et al. Identification of a surface glycoprotein on African green monkey kidney cells as a receptor for hepatitis A virus. EMBO J. 15, 4282–4296 (1996).

  • 8.

    Das, A., et al. TIM1 (HAVCR1) is not essential for cellular entry of either quasi-enveloped or naked hepatitis A virions. mBio 8, e00969-17 (2017).

  • 9.

    Das, A., Maury, W. & Lemon, S. M. TIM1 (HAVCR1): an essential ‘receptor’ or an ‘accessory attachment factor’ for hepatitis A virus? J. Virol. 93, e01793-18 (2019).

  • 10.

    Lemon, S. M. et al. Antigenic and genetic variation in cytopathic hepatitis A virus variants arising during persistent infection: evidence for genetic recombination. J. Virol. 65, 2056–2065 (1991).

  • 11.

    Tomicic, M. T., Thust, R. & Kaina, B. Ganciclovir-induced apoptosis in HSV-1 thymidine kinase expressing cells: critical role of DNA breaks, Bcl-2 decline and caspase-9 activation. Oncogene 21, 2141–2153 (2002).

  • 12.

    Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR–Cas9. Nat. Biotechnol. 34, 184–191 (2016).

  • 13.

    Groux-Degroote, S., Guerardel, Y. & Delannoy, P. Gangliosides: structures, biosynthesis, analysis, and roles in cancer. ChemBioChem 18, 1146–1154 (2017).

  • 14.

    van der Spoel, A. C., Mott, R. & Platt, F. M. Differential sensitivity of mouse strains to an N-alkylated imino sugar: glycosphingolipid metabolism and acrosome formation. Pharmacogenomics 9, 717–731 (2008).

  • 15.

    Barrientos, R. C. & Zhang, Q. Isobaric labeling of intact gangliosides toward multiplexed LC-MS/MS-based quantitative analysis. Anal. Chem. 90, 2578–2586 (2018).

  • 16.

    Schwarzmann, G., Hoffmann-Bleihauer, P., Schubert, J., Sandhoff, K. & Marsh, D. Incorporation of ganglioside analogues into fibroblast cell membranes. A spin-label study. Biochemistry 22, 5041–5048 (1983).

  • 17.

    Eckels, K. H., Summers, P. L. & Dubois, D. R. Hepatitis A virus hemagglutination and a test for hemagglutination inhibition antibodies. J. Clin. Microbiol. 27, 1375–1376 (1989).

  • 18.

    Sanchez, G. et al. Capsid region involved in hepatitis A virus binding to glycophorin A of the erythrocyte membrane. J. Virol. 78, 9807–9813 (2004).

  • 19.

    Mobius, W., Herzog, V., Sandhoff, K. & Schwarzmann, G. Intracellular distribution of a biotin-labeled ganglioside, GM1, by immunoelectron microscopy after endocytosis in fibroblasts. J. Histochem. Cytochem. 47, 1005–1014 (1999).

  • 20.

    Daniotti, J. L. & Iglesias-Bartolome, R. Metabolic pathways and intracellular trafficking of gangliosides. IUBMB Life 63, 513–520 (2011).

  • 21.

    Wang, X. et al. Potent neutralization of hepatitis A virus reveals a receptor mimic mechanism and the receptor recognition site. Proc. Natl Acad. Sci. USA 114, 770–775 (2017).

  • 22.

    Baggen, J. et al. Enterovirus D68 receptor requirements unveiled by haploid genetics. Proc. Natl Acad. Sci. USA 113, 1399–1404 (2016).

  • 23.

    Zocher, G. et al. A sialic acid binding site in a human picornavirus. PLoS Pathog. 10, e1004401 (2014).

  • 24.

    Kim, D. S. et al. Porcine sapelovirus uses alpha2,3-linked sialic acid on GD1a ganglioside as a receptor. J. Virol. 90, 4067–4077 (2016).

  • 25.

    Cohen, L., Benichou, D. & Martin, A. Analysis of deletion mutants indicates that the 2A polypeptide of hepatitis A virus participates in virion morphogenesis. J. Virol. 76, 7495–7505 (2002).

  • 26.

    Probst, C., Jecht, M. & Gauss-Muller, V. Intrinsic signals for the assembly of hepatitis A virus particles. Role of structural proteins VP4 and 2A. J. Biol. Chem. 274, 4527–4531 (1999).

  • 27.

    Zhou, D. et al. Unexpected mode of engagement between enterovirus 71 and its receptor SCARB2. Nat. Microbiol. 4, 414–419 (2019).

  • 28.

    Qian, M., Cai, D., Verhey, K. J. & Tsai, B. A lipid receptor sorts polyomavirus from the endolysosome to the endoplasmic reticulum to cause infection. PLoS Pathog. 5, e1000465 (2009).

  • 29.

    Ravindran, M. S., Bagchi, P., Cunningham, C. N. & Tsai, B. Opportunistic intruders: how viruses orchestrate ER functions to infect cells. Nat. Rev. Microbiol. 14, 407–420 (2016).

  • 30.

    Dupzyk, A. & Tsai, B. Bag2 is a component of a cytosolic extraction machinery that promotes membrane penetration of a nonenveloped virus. J. Virol. 92, e00607–18 (2018).

  • 31.

    Ewers, H. et al. GM1 structure determines SV40-induced membrane invagination and infection. Nat. Cell Biol. 12, 11–18 (2010).

  • 32.

    Ewers, H. & Helenius, A. Lipid-mediated endocytosis. Cold Spring Harb. Perspect. Biol. 3, a004721 (2011).

  • 33.

    Spriggs, C. C., Harwood, M. C. & Tsai, B. How non-enveloped viruses hijack host machineries to cause infection. Adv. Virus Res. 104, 97–122 (2019).

  • 34.

    Pinto, R. M., et al. Hepatitis A virus codon usage: implications for translation kinetics and capsid folding. Cold Spring Harb Perspect. Med. 8, a031781 (2018).

  • 35.

    Zhang, H. C. et al. An infectious cDNA clone of a cytopathic hepatitis A virus: genomic regions associated with rapid replication and cytopathic effect. Virology 212, 686–697 (1995).

  • 36.

    Yi, M., Bodola, F. & Lemon, S. M. Subgenomic hepatitis C virus replicons inducing expression of a secreted enzymatic reporter protein. Virology 304, 197–210 (2002).

  • 37.

    Lee, W. M., Monroe, S. S. & Rueckert, R. R. Role of maturation cleavage in infectivity of picornaviruses: activation of an infectosome. J. Virol. 67, 2110–2122 (1993).

  • 38.

    Wakita, T. et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat. Med. 11, 791–796 (2005).

  • 39.

    Blight, K. J., McKeating, J. A., Marcotrigiano, J. & Rice, C. M. Efficient replication of hepatitis C virus genotype 1a RNAs in cell culture. J. Virol. 77, 3181–3190 (2003).

  • 40.

    Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).

  • 41.

    MacGregor, A. et al. Monoclonal antibodies against hepatitis A virus. J. Clin. Microbiol. 18, 1237–1243 (1983).

  • 42.

    Doench, J. G. et al. Rational design of highly active sgRNAs for CRISPR–Cas9-mediated gene inactivation. Nat. Biotechnol. 32, 1262–1267 (2014).

  • 43.

    Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).

  • 44.

    Szklarczyk, D. et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).

  • 45.

    Stapleton, J. T. et al. Antigenic and immunogenic properties of recombinant hepatitis A virus 14S and 70S subviral particles. J. Virol. 67, 1080–1085 (1993).

  • 46.

    Gonzalez-Lopez, O. et al. Redundant late domain functions of tandem VP2 YPX3L motifs in nonlytic cellular egress of quasi-enveloped hepatitis A virus. J. Virol. 92, 1308–1318 (2018).

  • 47.

    Svennerholm, L. & Fredman, P. A procedure for quantitative isolation of brain gangliosides. Biochim. Biophys. Acta 617, 97–109 (1980).

  • 48.

    Zavesca Scientific Discussion (European Medicines Evaluation Agency, 2005); https://www.ema.europa.eu/en/documents/scientific-discussion/zavesca-epar-scientific-discussion_en.pdf

  • Source Link

    Related Articles

    Leave a Comment

    This website uses cookies to improve your experience. We will assume you are ok with this, but you can opt-out if you wish. Accept Read More

    %d bloggers like this: