Home Liver Diseases Fructose stimulated de novo lipogenesis is promoted by inflammation

Fructose stimulated de novo lipogenesis is promoted by inflammation

Credits to the Source Link Daniel
Fructose stimulated de novo lipogenesis is promoted by inflammation
  • 1.

    Spengler, E. K. & Loomba, R. Recommendations for diagnosis, referral for liver biopsy, and treatment of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Mayo Clin. Proc. 90, 1233–1246 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Stickel, F. & Hellerbrand, C. Non-alcoholic fatty liver disease as a risk factor for hepatocellular carcinoma: mechanisms and implications. Gut 59, 1303–1307 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Tilg, H. & Moschen, A. R. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52, 1836–1846 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Fukui, H. Increased intestinal permeability and decreased barrier function: does it really influence the risk of inflammation? Inflamm. Intest. Dis. 1, 135–145 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Lebeaupin, C. et al. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J. Hepatol. 69, 927–947 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Puri, P. et al. Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology 134, 568–576 (2008).

    CAS 

    Google Scholar
     

  • 7.

    Rahman, K. et al. Loss of junctional adhesion molecule a promotes severe steatohepatitis in mice on a diet high in saturated fat, fructose, and cholesterol. Gastroenterology 151, 733–746.e12 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Nakagawa, H. et al. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell 26, 331–343 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Kim, J. Y. et al. ER stress drives lipogenesis and steatohepatitis via caspase-2 activation of S1P. Cell 175, 133–145.e15 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Vos, M. B. & Lavine, J. E. Dietary fructose in nonalcoholic fatty liver disease. Hepatology 57, 2525–2531 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Jin, R. et al. Fructose induced endotoxemia in pediatric nonalcoholic fatty liver disease. Int. J. Hepatol. 2014, 560620 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Kavanagh, K. et al. Dietary fructose induces endotoxemia and hepatic injury in calorically controlled primates. Am. J. Clin. Nutr. 98, 349–357 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Spruss, A., Kanuri, G., Stahl, C., Bischoff, S. C. & Bergheim, I. Metformin protects against the development of fructose-induced steatosis in mice: role of the intestinal barrier function. Lab. Investig. 92, 1020–1032 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Lambertz, J., Weiskirchen, S., Landert, S. & Weiskirchen, R. Fructose: a dietary sugar in crosstalk with microbiota contributing to the development and progression of non-alcoholic liver disease. Front. Immunol. 8, 1159 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Oh, J.-H. et al. Dietary fructose and microbiota-derived short-chain fatty acids promote bacteriophage production in the gut symbiont Lactobacillus reuteri. Cell Host Microbe 25, 273–284.e6 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Chang, P. V., Hao, L., Offermanns, S. & Medzhitov, R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl Acad. Sci. USA 111, 2247–2252 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Kelly, C. J. et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17, 662–671 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Geidl-Flueck, B. & Gerber, P. A. Insights into the hexose liver metabolism—glucose versus fructose. Nutrients 9, 1026 (2017).

    PubMed Central 

    Google Scholar
     

  • 19.

    Softic, S., Cohen, D. E. & Kahn, C. R. Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig. Dis. Sci. 61, 1282–1293 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Softic, S. et al. Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling. J. Clin. Invest. 127, 4059–4074 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Grivennikov, S. I. et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491, 254–258 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Karin, M. & Clevers, H. Reparative inflammation takes charge of tissue regeneration. Nature 529, 307–315 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Barnett, M. P. G. et al. Changes in colon gene expression associated with increased colon inflammation in interleukin-10 gene-deficient mice inoculated with Enterococcus species. BMC Immunol. 11, 39 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Siddiqui, R. A. et al. Comparative study of the modulation of fructose/sucrose-induced hepatic steatosis by mixed lipid formulations varying in unsaturated fatty acid content. Nutr. Metab. (Lond.) 12, 41 (2015).


    Google Scholar
     

  • 25.

    Landy, J. et al. Tight junctions in inflammatory bowel diseases and inflammatory bowel disease associated colorectal cancer. World J. Gastroenterol. 22, 3117–3126 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Jaeken, J., Pirard, M., Adamowicz, M., Pronicka, E. & van Schaftingen, E. Inhibition of phosphomannose isomerase by fructose 1-phosphate: an explanation for defective N-glycosylation in hereditary fructose intolerance. Pediatr. Res. 40, 764–766 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Kaser, A. & Blumberg, R. S. Endoplasmic reticulum stress and intestinal inflammation. Mucosal Immunol. 3, 11–16 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Balda, M. S. & Matter, K. Tight junctions. J. Cell Sci. 111(Pt 5), 541–547 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Shalapour, S. et al. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature 551, 340–345 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Vos, M. B., Kimmons, J. E., Gillespie, C., Welsh, J. & Blanck, H. M. Dietary fructose consumption among US children and adults: the Third National Health and Nutrition Examination Survey. Medscape J. Med. 10, 160 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Low, B. C. et al. YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS Lett. 588, 2663–2670 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Choi, J. S., Kim, K.-H. & Lau, L. F. The matricellular protein CCN1 promotes mucosal healing in murine colitis through IL-6. Mucosal Immunol. 8, 1285–1296 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Taniguchi, K. et al. A gp130–Src–YAP module links inflammation to epithelial regeneration. Nature 519, 57–62 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Miki, T., Holst, O. & Hardt, W.-D. The bactericidal activity of the C-type lectin RegIIIβ against Gram-negative bacteria involves binding to lipid A. J. Biol. Chem. 287, 34844–34855 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Schröder, M. & Kaufman, R. J. ER stress and the unfolded protein response. Mutat. Res. 569, 29–63 (2005).

    PubMed 

    Google Scholar
     

  • 36.

    Metidji, A. et al. The environmental sensor AHR protects from inflammatory damage by maintaining intestinal stem cell homeostasis and barrier integrity. Immunity 49, 353–362.e5 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Wiest, R., Albillos, A., Trauner, M., Bajaj, J. S. & Jalan, R. Targeting the gut–liver axis in liver disease. J. Hepatol. 67, 1084–1103 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Ammirante, M., Luo, J.-L., Grivennikov, S., Nedospasov, S. & Karin, M. B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464, 302–305 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Fu, S. et al. Polysome profiling in liver identifies dynamic regulation of endoplasmic reticulum translatome by obesity and fasting. PLoS Genet. 8, e1002902 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141, 1762–1772 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinf. 12, 323 (2011).

    CAS 

    Google Scholar
     

  • 43.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Luo, W., Friedman, M. S., Shedden, K., Hankenson, K. D. & Woolf, P. J. GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinf. 10, 161 (2009).


    Google Scholar
     

  • 45.

    Luo, W. & Brouwer, C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 29, 1830–1831 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Marotz, C. et al. DNA extraction for streamlined metagenomics of diverse environmental samples. Biotechniques 62, 290–293 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2, e00191–16 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Kuczynski, J. et al. Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr. Protoc. Bioinformatics 36, 10.7 (2011).


    Google Scholar
     

  • 50.

    Lee, W. N. et al. In vivo measurement of fatty acids and cholesterol synthesis using D2O and mass isotopomer analysis. Am. J. Physiol. Metab. 266, E699–E708 (1994).

    CAS 

    Google Scholar
     

  • 51.

    Wallace, M. et al. Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues. Nat. Chem. Biol. 14, 1021–1031 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Kireeva, M. L., MO, F. E., Yang, G. P. & Lau, L. F. Cyr61, a product of a growth factor-inducible immediate-early gene, promotes cell proliferation, migration, and adhesion. Mol. Cell. Biol. 16, 1326–1334 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Mandal, S. et al. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb. Ecol. Health Dis. 26, 27663 (2015).

    PubMed 

    Google Scholar
     

  • Source Link

    Related Articles

    Leave a Comment

    This website uses cookies to improve your experience. We will assume you are ok with this, but you can opt-out if you wish. Accept Read More

    %d bloggers like this: