Home Liver DiseasesLiver Cancer Cell cycle-related kinase reprograms the liver immune microenvironment to promote cancer metastasis

Cell cycle-related kinase reprograms the liver immune microenvironment to promote cancer metastasis

Credits to the Source Link Daniel
Cell cycle-related kinase reprograms the liver immune microenvironment to promote cancer metastasis
  • 1.

    Chaffer, C. L. & Weinberg, R. A. A perspective on cancer cell metastasis. Science 331, 1559–1564 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Disibio, G. & French, S. W. Metastatic patterns of cancers: results from a large autopsy study. Arch. Pathol. Lab. Med. 132, 931–939 (2008).

    PubMed 

    Google Scholar
     

  • 3.

    Riihimaki, M., Hemminki, A., Sundquist, J. & Hemminki, K. Patterns of metastasis in colon and rectal cancer. Sci. Rep. 6, 29765 (2016).

    Article 

    Google Scholar
     

  • 4.

    Tas, F. Metastatic behavior in melanoma: timing, pattern, survival, and influencing factors. J. Oncol. 2012, 647684 (2012).

    Article 

    Google Scholar
     

  • 5.

    Brodt, P. Role of the microenvironment in liver metastasis: from pre- to prometastatic niches. Clin. Cancer Res. 22, 5971–5982 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Eggert, T. & Greten, T. F. Tumor regulation of the tissue environment in the liver. Pharmacol. Ther. 173, 47–57 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Robinson, M. W., Harmon, C. & O’Farrelly, C. Liver immunology and its role in inflammation and homeostasis. Cell Mol. Immunol. 13, 267–276 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Williamson, T., Sultanpuram, N. & Sendi, H. The role of liver microenvironment in hepatic metastasis. Clin. Transl. Med. 8, 21 (2019).

    Article 

    Google Scholar
     

  • 9.

    Kondo, T. et al. The impact of hepatic fibrosis on the incidence of liver metastasis from colorectal cancer. Br. J. Cancer 115, 34–39 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Wu, W. et al. Fatty liver is a risk factor for liver metastasis in Chinese patients with non-small cell lung cancer. PeerJ 7, e6612 (2019).

    Article 

    Google Scholar
     

  • 11.

    Lee, J. W. et al. Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature 567, 249–252 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Condamine, T., Ramachandran, I., Youn, J. I. & Gabrilovich, D. I. Regulation of tumor metastasis by myeloid-derived suppressor cells. Annu. Rev. Med. 66, 97–110 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Veglia, F., Perego, M. & Gabrilovich, D. Myeloid-derived suppressor cells coming of age. Nat. Immunol. 19, 108–119 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Zhou, J. et al. Hepatoma-intrinsic CCRK inhibition diminishes myeloid-derived suppressor cell immunosuppression and enhances immune-checkpoint blockade efficacy. Gut 67, 931–944 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Sun, H. et al. An inflammatory-CCRK circuitry drives mTORC1-dependent metabolic and immunosuppressive reprogramming in obesity-associated hepatocellular carcinoma. Nat. Commun. 9, 5214 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Liu, M. et al. Targeting monocyte-intrinsic enhancer reprogramming improves immunotherapy efficacy in hepatocellular carcinoma. Gut 69, 365–379 (2020).

    Article 

    Google Scholar
     

  • 17.

    Malumbres, M. & Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 9, 153–166 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Goel, S. et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature 548, 471–475 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Feng, H. et al. Cell cycle-related kinase is a direct androgen receptor-regulated gene that drives beta-catenin/T cell factor-dependent hepatocarcinogenesis. J. Clin. Investig. 121, 3159–3175 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Yu, Z. et al. Cell cycle-related kinase mediates viral-host signalling to promote hepatitis B virus-associated hepatocarcinogenesis. Gut 63, 1793–1804 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Feng, H. et al. A CCRK-EZH2 epigenetic circuitry drives hepatocarcinogenesis and associates with tumor recurrence and poor survival of patients. J. Hepatol. 62, 1100–1111 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Mok, M. T. et al. CCRK is a novel signalling hub exploitable in cancer immunotherapy. Pharmacol. Ther. 186, 138–151 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Lupu, F. I., Burnett, J. B. & Eggenschwiler, J. T. Cell cycle-related kinase regulates mammalian eye development through positive and negative regulation of the Hedgehog pathway. Dev. Biol. 434, 24–35 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Mumert, M. et al. Functional genomics identifies drivers of medulloblastoma dissemination. Cancer Res. 72, 4944–4953 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Zhu, J. et al. Resistance to cancer immunotherapy mediated by apoptosis of tumor-infiltrating lymphocytes. Nat. Commun. 8, 1404 (2017).

    Article 

    Google Scholar
     

  • 26.

    Ma, C. et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360, https://doi.org/10.1126/science.aan5931 (2018).

  • 27.

    Lu, X. et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature 543, 728–732 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Lu, Z. et al. Epigenetic therapy inhibits metastases by disrupting premetastatic niches. Nature, https://doi.org/10.1038/s41586-020-2054-x (2020).

  • 29.

    Burke, S. J. et al. NF-kappaB and STAT1 control CXCL1 and CXCL2 gene transcription. Am. J. Physiol. Endocrinol. Metab. 306, E131–E149 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Bergenfelz, C., Roxa, A., Mehmeti, M., Leandersson, K. & Larsson, A. M. Clinical relevance of systemic monocytic-MDSCs in patients with metastatic breast cancer. Cancer Immunol. Immunother. 69, 435–448 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Weide, B. et al. Myeloid-derived suppressor cells predict survival of patients with advanced melanoma: comparison with regulatory T cells and NY-ESO-1- or melan-A-specific T cells. Clin. Cancer Res. 20, 1601–1609 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Lee, J. W. & Beatty, G. L. Inflammatory networks cultivate cancer cell metastasis to the liver. Cell Cycle 19, 642–651 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Heymann, F. & Tacke, F. Immunology in the liver-from homeostasis to disease. Nat. Rev. Gastroenterol. Hepatol. 13, 88–110 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Motohashi, S. et al. A phase I-II study of alpha-galactosylceramide-pulsed IL-2/GM-CSF-cultured peripheral blood mononuclear cells in patients with advanced and recurrent non-small cell lung cancer. J. Immunol. 182, 2492–2501 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Fujii, S. et al. NKT cells as an ideal anti-tumor immunotherapeutic. Front. Immunol. 4, 409 (2013).

    Article 

    Google Scholar
     

  • 36.

    Li, Z., Wu, Y., Wang, C. & Zhang, M. Mouse CD8(+)NKT-like cells exert dual cytotoxicity against mouse tumor cells and myeloid-derived suppressor cells. Cancer Immunol. Immunother. 68, 1303–1315 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    De Santo, C. et al. Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans. J. Clin. Investig. 118, 4036–4048 (2008).

    Article 

    Google Scholar
     

  • 38.

    Bronte, V. et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 7, 12150 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Marshall, E. A. et al. Emerging roles of T helper 17 and regulatory T cells in lung cancer progression and metastasis. Mol. Cancer 15, 67 (2016).

    Article 

    Google Scholar
     

  • 40.

    Zhang, H. et al. Critical role of myeloid-derived suppressor cells in tumor-induced liver immune suppression through inhibition of NKT cell function. Front. Immunol. 8, 129 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Milette, S., Sicklick, J. K., Lowy, A. M. & Brodt, P. Molecular pathways: targeting the microenvironment of liver metastases. Clin. Cancer Res. 23, 6390–6399 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Source Link

    Related Articles

    Leave a Comment

    This website uses cookies to improve your experience. We will assume you are ok with this, but you can opt-out if you wish. Accept Read More

    %d bloggers like this: