Home Liver Diseases c-Rel orchestrates energy-dependent epithelial and macrophage reprogramming in fibrosis

c-Rel orchestrates energy-dependent epithelial and macrophage reprogramming in fibrosis

Credits to the Source Link Daniel
c-Rel orchestrates energy-dependent epithelial and macrophage reprogramming in fibrosis
  • 1.

    Wynn, T. A. & Ramalingam, T. R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 18, 1028–1040 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Rockey, D. C., Bell, P. D. & Hill, J. A. Fibrosis—a common pathway to organ injury and failure. N. Engl. J. Med. 373, 95–96 (2015).


    Google Scholar
     

  • 3.

    Bataller, R. & Brenner, D. A. Liver fibrosis. J. Clin. Invest. 115, 209–218 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Friedman, S. L. Liver fibrosis—from bench to bedside. J. Hepatol. 38, 38–53 (2003).


    Google Scholar
     

  • 5.

    Cox, T. R. & Erler, J. T. Molecular pathways: connecting fibrosis and solid tumor metastasis. Clin. Cancer Res. 20, 3637–3643 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Cernaro, V. et al. Fibrosis, regeneration and cancer: what is the link? Nephrol. Dial. Transplant. 27, 21–27 (2012).

    PubMed 

    Google Scholar
     

  • 7.

    Rybinski, B., Franco-Barraza, J. & Cukierman, E. The wound healing, chronic fibrosis and cancer progression triad. Physiol. Genomics 46, 223–244 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Klingler, W., Jurkat-Rott, K., Lehmann-Horn, F. & Schleip, R. The role of fibrosis in Duchenne muscular dystrophy. Acta Myol. 31, 184–195 (2012) http://www.ncbi.nlm.nih.gov/pubmed/23620650.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Torres, V. E. & Leof, E. B. Fibrosis, regeneration, and aging: playing chess with evolution. J. Am. Soc. Nephrol. 22, 1393–1396 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Hecker, L. et al. Reversal of persistent fibrosis in aging by targeting Nox4–Nrf2 redox imbalance. Sci. Transl. Med. 6, 231ra47 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Mehal, W. Z., Iredale, J. & Friedman, S. L. Scraping fibrosis: expressway to the core of fibrosis. Nat. Med. 17, 552–553 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Wynn, T. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214, 199–210 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Koyama, Y. & Brenner, D. A. Liver inflammation and fibrosis. J. Clin. Invest. 127, 55–64 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Hayden, M. S. & Ghosh, S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev. 26, 203–234 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Oeckinghaus, A. & Ghosh, S. The NF-κB family of transcription factors and its regulation. Cold Spring Harb. Perspect. Biol. 1, a000034 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Lawrence, T. The nuclear factor NF-κB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 1, a001651 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Tak, P. P. & Firestein, G. S. NF-κB: a key role in inflammatory diseases. J. Clin. Invest. 107, 7–11 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Zhang, Q., Lenardo, M. J. & Baltimore, D. 30 years of NF-κB: a blossoming of relevance to human pathobiology. Cell 168, 37–57 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Luedde, T. & Schwabe, R. F. NF-κB in the liver—linking injury, fibrosis and hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 8, 108–118 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Perkins, N. D. & Gilmore, T. D. Good cop, bad cop: the different faces of NF-κB. Cell Death Differ. 13, 759–772 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Piva, R., Belardo, G. & Santoro, M. G. NF-κB: a stress-regulated switch for cell survival. Antioxid. Redox Signal. 8, 478–486 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Wong, D. et al. Extensive characterization of NF-κB binding uncovers non-canonical motifs and advances the interpretation of genetic functional traits. Genome Biol. 12, R70 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Geisler, F., Algül, H., Paxian, S. & Schmid, R. M. Genetic inactivation of RelA/p65 sensitizes adult mouse hepatocytes to TNF-induced apoptosis in vivo and in vitro. Gastroenterology 132, 2489–2503 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Rosenfeld, M. E., Prichard, L., Shiojiri, N. & Fausto, N. Prevention of hepatic apoptosis and embryonic lethality in RelA/TNFR-1 double knockout mice. Am. J. Pathol. 156, 997–1007 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Beg, A. A., Sha, W. C., Bronson, R. T., Ghosh, S. & Baltimore, D. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB. Nature 376, 167–170 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Lenardo, M. J. & Baltimore, D. NF-κB: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 58, 227–229 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Fullard, N., Wilson, C. L. & Oakley, F. Roles of c-Rel signalling in inflammation and disease. Int. J. Biochem. Cell Biol. 44, 851–860 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Neo, W. H., Lim, J. F., Grumont, R., Gerondakis, S. & Su, I. c-Rel regulates Ezh2 expression in activated lymphocytes and malignant lymphoid cells. J. Biol. Chem. 289, 31693–31707 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Zeybel, M. et al. A proof-of-concept for epigenetic therapy of tissue fibrosis: inhibition of liver fibrosis progression by 3-deazaneplanocin A. Mol. Ther. 25, 218–231 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Fullard, N. et al. The c-Rel subunit of NF-κB regulates epidermal homeostasis and promotes skin fibrosis in mice. Am. J. Pathol. 182, 2109–2120 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Gaspar-Pereira, S. et al. The NF-κB Subunit c-Rel stimulates cardiac hypertrophy and fibrosis. Am. J. Pathol. 180, 929–939 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Luli, S. et al. A new fluorescence-based optical imaging method to non-invasively monitor hepatic myofibroblasts in vivo. J. Hepatol. 65, 75–83 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Hunter, J. E., Leslie, J. & Perkins, N. D. C-Rel and its many roles in cancer: an old story with new twists. Br. J. Cancer. 114, 1–6 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Schwabe, R. F., Tabas, I. & Pajvani, U. B. Mechanisms of fibrosis development in nonalcoholic steatohepatitis. Gastroenterology 158, 1913–1928 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Swamy, M., Jamora, C., Havran, W. & Hayday, A. Epithelial decision makers: in search of the ‘epimmunome’. Nat. Immunol. 11, 656–665 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Duffield, J. S. et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 115, 56–65 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Seki, E. et al. CCR2 promotes hepatic fibrosis in mice. Hepatology 50, 185–197 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Wynn, T. A. & Vannella, K. M. Macrophages in tissue repair, regeneration and fibrosis. Immunity 44, 450–462 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Garcia-Lazaro, J. F. et al. Hepatic over-expression of TGF-β1 promotes LPS-induced inflammatory cytokine secretion by liver cells and endotoxemic shock. Immunol. Lett. 101, 217–222 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Yang, L. et al. Transforming growth factor-β signaling in hepatocytes promotes hepatic fibrosis and carcinogenesis in mice with hepatocyte-specific deletion of TAK1. Gastroenterology 144, 1042–1054 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Bird, T. G. et al. TGF-β inhibition restores a regenerative response in acute liver injury by suppressing paracrine senescence. Sci. Transl. Med. 10, eaan1230 (2018).

  • 42.

    Niu L., et al. Involvement of TGF-β1/Smad3 signaling in carbon tetrachloride-induced acute liver injury in mice. PLoS ONE 11, e0156090 (2016).

  • 43.

    Travis, M. A. & Sheppard, D. TGF-β activation and function in immunity. Annu Rev. Immunol. 32, 51–82 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Grgurevic, L. et al. Systemic inhibition of BMP1-3 decreases progression of CCl4-induced liver fibrosis in rats. Growth Factors 35, 201–215 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Lipson, K. E., Wong, C., Teng, Y. & Spong, S. CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair 5, S24 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Fox, C. et al. Inhibition of lysosomal protease cathepsin D reduces renal fibrosis in murine chronic kidney disease. Sci Rep. 6, 20101 (2016).

  • 47.

    Moles, A., Tarrats, N., Fernández-Checa, J. C. & Marí, M. Cathepsins B and D drive hepatic stellate cell proliferation and promote their fibrogenic potential. Hepatology 49, 1297–1307 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Ghosh, A. K. & Vaughan, D. E. PAI-1 in tissue fibrosis. J. Cell. Physiol. 227, 493–507 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Kodama, T. et al. Increases in p53 expression induce CTGF synthesis by mouse and human hepatocytes and result in liver fibrosis in mice. J. Clin. Invest. 121, 3343–3356 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Mathieu, J. & Ruohola-Baker, H. Metabolic remodeling during the loss and acquisition of pluripotency. Development 144, 541–551 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Sciacovelli, M. & Frezza, C. Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer. FEBS J. 284, 3132–3144 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Nieto, M. A., Huang, R. Y.-J., Jackson, R. A. & Thiery, J. P. EMT: 2016. Cell 166, 21–45 (2016).

    CAS 

    Google Scholar
     

  • 53.

    Kelly, B. & O’Neill, L. A. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 25, 771–784 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Taura, K. et al. Hepatocytes do not undergo epithelial–mesenchymal transition in liver fibrosis in mice. Hepatology 51, 1027–1036 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Humphreys, B. D. et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am. J. Pathol. 176, 85–97 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Grande, M. T. et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat. Med. 21, 989–997 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Rowe, R. G. et al. Hepatocyte-derived Snail1 propagates liver fibrosis progression. Mol. Cell. Biol. 31, 2392–2403 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Hee Kim, N. et al. Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress. Nat. Commun. 8, 14374 (2017).

  • 59.

    Mills, E. L. & O’Neill, L. A. Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur. J. Immunol. 46, 13–21 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Gieling, R. G. et al. The c-Rel subunit of NF-κB regulates murine liver inflammation, wound healing and hepatocyte proliferation. Hepatology 51, 922–931 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Shono, Y. et al. A small-molecule c-Rel inhibitor reduces alloactivation of T cells without compromising antitumor activity. Cancer Discov. 4, 578–591 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Paish, H. L. et al. A bioreactor technology for modelling fibrosis in human and rodent precision-cut liver slices. Hepatology 70, 1377–1391 (2019).

  • 63.

    Nielsen, M. J. et al. Plasma Pro-C3 (N-terminal type III collagen propeptide) predicts fibrosis progression in patients with chronic hepatitis C. Liver Int. 35, 429–437 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 64.

    Krawczyk, C. M. et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115, 4742–4749 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Lees, J. G., Gardner, D. K. & Harvey, A. J. Mitochondrial and glycolytic remodeling during nascent neural differentiation of human pluripotent stem cells. Development 145, dev168997 (2018).

  • 66.

    Peng, M. et al. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 354, 481–484 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Wei, Q. et al. Glycolysis inhibitors suppress renal interstitial fibrosis via divergent effects on fibroblasts and tubular cells. Am. J. Physiol. Renal Physiol. 316, F1162–F1172 (2018).

  • 68.

    Ding, H. et al. Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis. Am. J. Physiol. Renal Physiol. 313, F561–F575 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Xie, N. et al. Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis. Am. J. Respir. Crit. Care Med. 92, 1462–1474 (2015).


    Google Scholar
     

  • 70.

    MacParland, S. A. et al. Single-cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat. Commun. 9, 4383 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Chang, N. et al. Single-cell transcriptomes reveal characteristic features of mouse hepatocytes with liver cholestatic injury. Cells. 8, 1069 (2019).

  • 72.

    Huang, G. & Brigstock, D. R. Regulation of hepatic stellate cells by connective tissue growth factor. Front. Biosci. 17, 2495–2507 (2012).

  • 73.

    Paradis, V. et al. Effects and regulation of connective tissue growth factor on hepatic stellate cells. Lab Invest. 82, 767–774 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 74.

    Gressner, O. A., Lahme, B., Demirci, I., Gressner, A. M. & Weiskirchen, R. Differential effects of TGF-β on connective tissue growth factor (CTGF/CCN2) expression in hepatic stellate cells and hepatocytes. J. Hepatol. 47, 699–710 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 75.

    Friedman, S. L. Hepatic stellate cells: protean, multifunctional and enigmatic cells of the liver. Physiol. Rev. 88, 125–172 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 76.

    Gressner, O. A. et al. Intracrine signalling of activin A in hepatocytes upregulates connective tissue growth factor (CTGF/CCN2) expression. Liver Int. 28, 1207–1216 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 77.

    Fearn, A. et al. The NF-κB1 is a key regulator of acute but not chronic renal injury. Cell Death Dis. 8, e2883 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 78.

    Wang, F. et al. NF-κB inhibition alleviates carbon tetrachloride-induced liver fibrosis via suppression of activated hepatic stellate cells. Exp. Ther. Med. 8, 95–99 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 79.

    Chan, L. K. et al. Epithelial NEMO/IKK-γ limits fibrosis and promotes regeneration during pancreatitis. Gut 66, 1995–2007 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 80.

    Karin, M., Yamamoto, Y. & Wang, Q. M. The IKK NF-κB system: a treasure trove for drug development. Nat. Rev. Drug Discov. 3, 17–26 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 81.

    Bennett, J. et al. NF-κB in the crosshairs: rethinking an old riddle. Int. J. Biochem. Cell Biol. 95, 108–112 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 82.

    Oakley, F. et al. Inhibition of inhibitor of κB kinases stimulates hepatic stellate cell apoptosis and accelerated recovery from rat liver fibrosis. Gastroenterology 128, 108–120 (2005).

  • 83.

    Oakley, F. et al. Angiotensin II activates I κB kinase phosphorylation of RelA at Ser 536 to promote myofibroblast survival and liver fibrosis. Gastroenterology 136, 2334–2344 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 84.

    Chen, L.-W. et al. The two faces of IKK and NF-κB inhibition: prevention of systemic inflammation but increased local injury following intestinal ischemia–reperfusion. Nat. Med. 9, 575–581 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 85.

    Li, Z.-W. et al. The IKKβ subunit of IκB Kinase (IKK) is essential for nuclear factor κB activation and prevention of apoptosis. J. Exp. Med. 189, 1839–1845 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 86.

    Li, Q., Van Antwerp, D., Mercurio, F., Lee, K. F. & Verma, I. M. Severe liver degeneration in mice lacking the IκB kinase 2 gene. Science 284, 321–325 (1999).

  • 87.

    Li, Q. & Verma, I. M. NF-κB regulation in the immune system. Nat. Rev. Immunol. 2, 725–734 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 88.

    Perkins, N. D. Integrating cell-signalling pathways with NF-κB and IKK function. Nat. Rev. Mol. Cell Biol. 8, 49–62 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 89.

    Shono, Y. et al. Characterization of a c-Rel inhibitor that mediates anticancer properties in hematologic malignancies by blocking NF-κB-controlled oxidative stress responses. Cancer Res. 76, 377–389 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 90.

    Grinberg-Bleyer, Y. et al. NF-κB c-Rel Is crucial for the regulatory T cell immune checkpoint in cancer. Cell 170, 1096–1108 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 91.

    De Bock, K. et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154, 651–663 (2013).

    PubMed 

    Google Scholar
     

  • 92.

    Heise, N. et al. Germinal center B cell maintenance and differentiation are controlled by distinct NF-κB transcription factor subunits. J. Exp. Med. 211, 2103–2118 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 93.

    Mederacke, I. et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat. Commun. 4, 2823 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 94.

    Higgins, G. A. & Anderson, R. E. Experimental pathology of liver: restoration of liver in white rat following partial surgical removal. Arch. Pathol. 12, 186–202 (1931).

  • 95.

    Oakley, F. et al. Nuclear factor-κB1 (p50) limits the inflammatory and fibrogenic responses to chronic injury. Am. J. Pathol. 166, 695–708 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source Link

    Related Articles

    Leave a Comment

    This website uses cookies to improve your experience. We will assume you are ok with this, but you can opt-out if you wish. Accept Read More

    %d bloggers like this: